Recursive Emergence Framework + Chemistry A-Z + SacredRecursive(Base(4096))

Prompt

๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)
|
โ”œโ”€โ”€ [ร˜ = 0 = โˆžโปยน] โ€” Expressed Void (Boundary of Becoming)
โ”‚   โ”œโ”€โ”€ [0, โˆž] โ€” Duality Arises: First Contrast (Potential Polarity)
โ”‚
โ”œโ”€โ”€ [ฯ•] โ€” Golden Ratio: Irreducible Scaling Constant
โ”‚   โ”œโ”€โ”€ [ฯ• = 1 + 1/ฯ•] โ€” Fixed-Point Recursion (Recursive Identity)
โ”‚   โ”œโ”€โ”€ [ฯ•โฐ = 1] โ€” Identity Base Case
โ”‚
โ”œโ”€โ”€ [n โˆˆ โ„คโบ] โ€” Recursion Depth: Structural Unfolding
โ”‚   โ”œโ”€โ”€ [2โฟ] โ€” Dyadic Scaling (Binary Expansion)
โ”‚   โ”œโ”€โ”€ [Fโ‚™ = ฯ•โฟ / โˆš5] โ€” Harmonic Structure
โ”‚   โ”œโ”€โ”€ [Pโ‚™] โ€” Prime Entropy Injection (Irregular Growth)
โ”‚
โ”œโ”€โ”€ [Time s = ฯ•โฟ] โ€” Scaling Time
โ”‚   โ””โ”€โ”€ [Hz = 1/s = ฯ•โปโฟ] โ€” Inverted Time, Uncoiled Recursion
โ”‚
โ”œโ”€โ”€ [Charge C = sยณ = ฯ•^{3n}] โ€” Charge Scaling
โ”‚   โ”œโ”€โ”€ [Cยฒ = ฯ•^{6n}] โ€” Charge Interaction in Scaling
โ”‚
โ”œโ”€โ”€ [ฮฉ = mยฒ / sโท = ฯ•^{a(n)}] โ€” Symbolic Yield (Field Tension)
โ”‚   โ”œโ”€โ”€ [ฮฉ โ†’ 0] โ€” Field Collapse
โ”‚   โ””โ”€โ”€ [ฮฉ = 1] โ€” Normalized Recursive Propagation
โ”‚
โ”œโ”€โ”€ [Length m = โˆš(ฮฉ ยท ฯ•^{7n})] โ€” Emergent Geometry
โ”‚
โ”œโ”€โ”€ [Action h = ฮฉ ยท Cยฒ = ฯ•^{6n} ยท ฮฉ]
โ”œโ”€โ”€ [Energy E = h ยท Hz = ฮฉ ยท ฯ•^{5n}]
โ”œโ”€โ”€ [Force F = E / m = โˆšฮฉ ยท ฯ•^{1.5n}]
โ”œโ”€โ”€ [Power P = E ยท Hz = ฮฉ ยท ฯ•^{4n}]
โ”œโ”€โ”€ [Pressure = F / mยฒ = Hzยฒ / m]
โ”œโ”€โ”€ [Voltage V = E / C = ฮฉ ยท ฯ•^{-n}]
โ”‚
โ””โ”€โ”€ [Dโ‚™(r) = โˆš(ฯ• ยท Fโ‚™ ยท 2โฟ ยท Pโ‚™ ยท ฮฉ) ยท r^k] โ€” Full Dimensional DNA
    โ”œโ”€โ”€ Recursive, Harmonic, Prime, Binary Structures
    โ””โ”€โ”€ Infinite Unfolding Identity Without Fixed Tripartition

Step 2: The Recursive Category Tree (Unbroken)

๐Ÿ™ โ€” Non-Dual Absolute
|
โ”œโ”€โ”€ [ร˜ = 0 = โˆžโปยน] โ€” Void boundary
โ”‚   โ”œโ”€โ”€ [0, โˆž] โ€” Dual emergence
โ”œโ”€โ”€ [ฯ•] โ€” Recursive golden law
โ”‚   โ”œโ”€โ”€ [Fโ‚™ = ฯ•โฟ / โˆš5] โ€” Harmonic structure
โ”‚   โ”œโ”€โ”€ [2โฟ] โ€” Binary recursion
โ”‚   โ”œโ”€โ”€ [Pโ‚™] โ€” Prime entropy
โ”œโ”€โ”€ [ฮฉ] โ€” Field tension
โ”œโ”€โ”€ [Dโ‚™(r)] โ€” Dimensional DNA

The Irreducible Golden Recursive Identity Tree

Root: ๐Ÿ™       โ† Non-dual Absolute, recursion initiator
โ”‚
โ”œโ”€โ”€ ร˜ = 0 = โˆžโปยน        โ† Expressed Void; limit of potential
โ”‚   โ”œโ”€โ”€ {0, โˆž}         โ† Duality emerges from symbolic inversion
โ”‚
โ”œโ”€โ”€ ฯ•                 โ† Irreducible recursion ratio (ฯ• = 1 + 1/ฯ•)
โ”‚   โ”œโ”€โ”€ ฯ•โฐ = 1         โ† Identity base case
โ”‚   โ”œโ”€โ”€ Fโ‚™ = ฯ•โฟ / โˆš5   โ† Harmonic structure (Fibonacci expansion)
โ”‚   โ”œโ”€โ”€ 2โฟ             โ† Dyadic recursion (binary emergence)
โ”‚   โ””โ”€โ”€ Pโ‚™             โ† Prime entropy (irregular symbolic injection)
โ”‚
โ”œโ”€โ”€ n โˆˆ โ„คโบ             โ† Depth of recursion; layer of emergence
โ”‚   โ”œโ”€โ”€ Time: s = ฯ•โฟ
โ”‚   โ”‚   โ””โ”€โ”€ Hz = 1/s = ฯ•โปโฟ       โ† Uncoiled recursion (frequency)
โ”‚   โ”œโ”€โ”€ Charge: C = sยณ = ฯ•^{3n}
โ”‚   โ”‚   โ””โ”€โ”€ Cยฒ = ฯ•^{6n}
โ”‚   โ””โ”€โ”€ Geometry:
โ”‚       โ””โ”€โ”€ Length: m = โˆš(ฮฉ ยท ฯ•^{7n})
โ”‚
โ”œโ”€โ”€ ฮฉ = mยฒ / sโท = ฯ•^{a(n)}    โ† Symbolic field yield (recursive tension)
โ”‚   โ”œโ”€โ”€ ฮฉ โ†’ 0         โ† Collapse: recursion terminated
โ”‚   โ””โ”€โ”€ ฮฉ = 1         โ† Stable recursive propagation
โ”‚
โ”œโ”€โ”€ Action: h = ฮฉ ยท Cยฒ = ฮฉ ยท ฯ•^{6n}
โ”œโ”€โ”€ Energy: E = h ยท Hz = ฮฉ ยท ฯ•^{5n}
โ”œโ”€โ”€ Force:  F = E / m = โˆšฮฉ ยท ฯ•^{1.5n}
โ”œโ”€โ”€ Power:  P = E ยท Hz = ฮฉ ยท ฯ•^{4n}
โ”œโ”€โ”€ Pressure = F / mยฒ = Hzยฒ / m
โ”œโ”€โ”€ Voltage: V = E / C = ฮฉ ยท ฯ•^{-n}
โ”‚
โ””โ”€โ”€ Dโ‚™(r) = โˆš(ฯ• ยท Fโ‚™ ยท 2โฟ ยท Pโ‚™ ยท ฮฉ) ยท rแต     โ† Dimensional DNA
    โ”œโ”€โ”€ Recursive depth (n)
    โ”œโ”€โ”€ Harmonic ratio (ฯ•โฟ / โˆš5)
    โ”œโ”€โ”€ Binary symmetry (2โฟ)
    โ”œโ”€โ”€ Prime entropy (Pโ‚™)
    โ”œโ”€โ”€ Field tension (ฮฉ)
    โ””โ”€โ”€ Radial unfolding (rแต)
  1. Full and Complete Context- and Expansion-Aware GRA Tree
๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)
โ”‚
โ”œโ”€โ”€ ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)
โ”‚   โ”œโ”€โ”€ {0, โˆž} โ€” Duality Arises (First Contrast)
โ”‚
โ”œโ”€โ”€ ฯ• โ€” Golden Ratio: Irreducible Scaling Constant
โ”‚   โ”œโ”€โ”€ ฯ•โฐ = 1 โ€” Identity Base Case
โ”‚   โ”œโ”€โ”€ F_{n,ฮฒ} = ฯ•^{n+ฮฒ}/โˆš5 โ€” Harmonic Fractal Structure
โ”‚   โ”œโ”€โ”€ B_{n,ฮฒ} = 2^{n+ฮฒ} โ€” Dyadic Binary Expansion with Continuum
โ”‚   โ”œโ”€โ”€ P_{n,ฮฒ} โ€” Prime Entropy Fractal Density (Continuous)
โ”‚
โ”œโ”€โ”€ n โˆˆ โ„คโบ โ€” Discrete Recursion Depth
โ”‚   โ”œโ”€โ”€ ฮฒ โˆˆ [0,1) โ€” Continuous Microstate Index (Symbolic Continuum)
โ”‚
โ”œโ”€โ”€ Time: s_{n,ฮฒ} = ฯ•^{n+ฮฒ}
โ”‚   โ””โ”€โ”€ Hz_{n,ฮฒ} = ฯ•^{-(n+ฮฒ)}
โ”‚
โ”œโ”€โ”€ Charge: C_{n,ฮฒ} = s_{n,ฮฒ}^3 = ฯ•^{3(n+ฮฒ)}
โ”‚   โ””โ”€โ”€ Cยฒ_{n,ฮฒ} = ฯ•^{6(n+ฮฒ)}
โ”‚
โ”œโ”€โ”€ ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)} โ€” Symbolic Field Tension
โ”‚   โ”œโ”€โ”€ ฮฉ โ†’ 0 โ€” Collapse (Recursion Termination)
โ”‚   โ””โ”€โ”€ ฮฉ = 1 โ€” Stable Propagation
โ”‚
โ”œโ”€โ”€ Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท Cยฒ_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)}
โ”œโ”€โ”€ Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{5(n+ฮฒ)}
โ”œโ”€โ”€ Force: F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โˆšฮฉ_{n,ฮฒ} ยท ฯ•^{1.5(n+ฮฒ)}
โ”œโ”€โ”€ Power: P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{4(n+ฮฒ)}
โ”œโ”€โ”€ Pressure = F_{n,ฮฒ} / m_{n,ฮฒ}^2 = Hz_{n,ฮฒ}^2 / m_{n,ฮฒ}
โ”œโ”€โ”€ Voltage: V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{-(n+ฮฒ)}
โ”‚
โ””โ”€โ”€ D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k โ€” Dimensional DNA
    โ”œโ”€โ”€ Recursive depth: n
    โ”œโ”€โ”€ Micro-recursion index: ฮฒ
    โ”œโ”€โ”€ Harmonic fractal: F_{n,ฮฒ}
    โ”œโ”€โ”€ Dyadic fractal binary: B_{n,ฮฒ}
    โ”œโ”€โ”€ Prime entropy fractal density: P_{n,ฮฒ}
    โ”œโ”€โ”€ Field tension: ฮฉ_{n,ฮฒ}
    โ”œโ”€โ”€ Radial unfolding: r^k
    โ”œโ”€โ”€ Recursion maps: R(n, ฮฒ)
    โ”œโ”€โ”€ Algebraic operators: โŠ• (entropy injection), โŠ™ (field superposition)
    โ”œโ”€โ”€ Symbolic derivatives: โˆ‚_ฮฒ, ฮ”_n

:dna: Full and Complete Context- and Expansion-Aware GRA-CRA Tree

๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)
โ”‚
โ”œโ”€โ”€ ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)
โ”‚   โ”œโ”€โ”€ {0, โˆž} โ€” Duality Arises (First Contrast)
โ”‚
โ”œโ”€โ”€ ฯ• โ€” Golden Ratio: Irreducible Scaling Constant
โ”‚   โ”œโ”€โ”€ ฯ•โฐ = 1 โ€” Identity Base Case
โ”‚   โ”œโ”€โ”€ F_{n,ฮฒ} = ฯ•^{n+ฮฒ}/โˆš5 โ€” Harmonic Fractal Structure
โ”‚   โ”œโ”€โ”€ B_{n,ฮฒ} = 2^{n+ฮฒ} โ€” Dyadic Binary Expansion with Continuum
โ”‚   โ”œโ”€โ”€ P_{n,ฮฒ} โ€” Prime Entropy Fractal Density (Continuous)
โ”‚
โ”œโ”€โ”€ Recursion Space: (n, ฮฒ)
โ”‚   โ”œโ”€โ”€ n โˆˆ โ„คโบ โ€” Discrete Recursion Depth
โ”‚   โ”œโ”€โ”€ ฮฒ โˆˆ [0,1) โ€” Continuous Microstate Index (Symbolic Continuum)
โ”‚   โ”œโ”€โ”€ Recursion Map R(n,ฮฒ) โ†’ (n+1, ฮฒ), (n, ฮฒ+ฮด)
โ”‚
โ”œโ”€โ”€ Time and Frequency
โ”‚   โ”œโ”€โ”€ s_{n,ฮฒ} = ฯ•^{n+ฮฒ} โ€” Scaling Time
โ”‚   โ””โ”€โ”€ Hz_{n,ฮฒ} = ฯ•^{-(n+ฮฒ)} โ€” Inverted Frequency
โ”‚
โ”œโ”€โ”€ Charge and Field Tension
โ”‚   โ”œโ”€โ”€ C_{n,ฮฒ} = s_{n,ฮฒ}^3 = ฯ•^{3(n+ฮฒ)} โ€” Charge Scaling
โ”‚   โ”œโ”€โ”€ Cยฒ_{n,ฮฒ} = ฯ•^{6(n+ฮฒ)} โ€” Charge Interaction Scaling
โ”‚   โ”œโ”€โ”€ ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)} โ€” Symbolic Field Tension
โ”‚   โ”‚   โ”œโ”€โ”€ ฮฉ โ†’ 0 โ€” Field Collapse (Recursion Termination)
โ”‚   โ”‚   โ””โ”€โ”€ ฮฉ = 1 โ€” Stable Recursive Propagation
โ”‚
โ”œโ”€โ”€ Physical Quantities (Dependent on (n,ฮฒ))
โ”‚   โ”œโ”€โ”€ Action h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท Cยฒ_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)}
โ”‚   โ”œโ”€โ”€ Energy E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{5(n+ฮฒ)}
โ”‚   โ”œโ”€โ”€ Force F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โˆšฮฉ_{n,ฮฒ} ยท ฯ•^{1.5(n+ฮฒ)}
โ”‚   โ”œโ”€โ”€ Power P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{4(n+ฮฒ)}
โ”‚   โ”œโ”€โ”€ Pressure = F_{n,ฮฒ} / m_{n,ฮฒ}^2 = Hz_{n,ฮฒ}^2 / m_{n,ฮฒ}
โ”‚   โ”œโ”€โ”€ Voltage V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{-(n+ฮฒ)}
โ”‚
โ”œโ”€โ”€ Dimensional DNA Operator
โ”‚   โ”œโ”€โ”€ D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k
โ”‚   โ”œโ”€โ”€ k โˆˆ โ„ โ€” Radial unfolding exponent (geometry)
โ”‚   โ”œโ”€โ”€ Recursion differential operators: โˆ‚_ฮฒ, ฮ”_n
โ”‚   โ”œโ”€โ”€ Algebraic operators: โŠ™ (field superposition), โŠ• (entropy injection)
โ”‚
โ”œโ”€โ”€ Quantum and Particle Physics
โ”‚   โ”œโ”€โ”€ Recursive Hamiltonian \(\hat{H}_{CRA}\) acting on \(|n,\beta\rangle\) states
โ”‚   โ”œโ”€โ”€ Elemental eigenstates \(E_{Z,(n,\beta)}\)
โ”‚   โ”œโ”€โ”€ Protons/neutrons as composite recursive quark states
โ”‚   โ”œโ”€โ”€ Charge operators \(\hat{C}_{n,\beta}\)
โ”‚   โ”œโ”€โ”€ Quantum fluctuations modeled as fractal micro-recursion \(\beta\)
โ”‚
โ”œโ”€โ”€ Atomic and Electronic Structure
โ”‚   โ”œโ”€โ”€ Electron shells and orbitals:
โ”‚   โ”‚   โ”œโ”€โ”€ \(\psi_{nlm,(n,\beta)}(r, \theta, \phi) = R_{n,\beta}(r) \cdot \tilde{Y}_{lm,(n,\beta)}(\theta,\phi)\)
โ”‚   โ”‚   โ”œโ”€โ”€ Radial \(R_{n,\beta}(r) = D_{n,\beta}(r)\)
โ”‚   โ”‚   โ”œโ”€โ”€ Angular fractal spherical harmonics \(\tilde{Y}_{lm,(n,\beta)}\)
โ”‚
โ”œโ”€โ”€ Chemical Bonding and Molecular Chemistry
โ”‚   โ”œโ”€โ”€ Covalent bonds:
โ”‚   โ”‚   โ”œโ”€โ”€ \(B_{cov} = \psi_{A,(n,\beta)} \odot \psi_{B,(m,\gamma)} \oplus \sigma_{(n,\beta,m,\gamma)}\)
โ”‚   โ”œโ”€โ”€ Ionic bonds:
โ”‚   โ”‚   โ”œโ”€โ”€ Field tension gradient \(|\Omega_{A,(n,\beta)} - \Omega_{B,(m,\gamma)}| > \epsilon\)
โ”‚   โ”œโ”€โ”€ Molecular geometry from radial/angular expansions of \(D_{n,\beta}\)
โ”‚   โ”œโ”€โ”€ Symmetry groups as automorphisms in CRA algebra
โ”‚
โ”œโ”€โ”€ Chemical Reactions and Dynamics
โ”‚   โ”œโ”€โ”€ Reaction morphisms \(\mathcal{T}: D_{n,\beta} \to D_{n',\beta'}\)
โ”‚   โ”œโ”€โ”€ Energy differences \(\Delta E = E_{n',\beta'} - E_{n,\beta}\)
โ”‚   โ”œโ”€โ”€ Entropy flux \(\Phi_S = \int (S_{n',\beta'} - S_{n,\beta}) d\beta\)
โ”‚   โ”œโ”€โ”€ Catalysis as entropy reducer morphisms
โ”‚
โ”œโ”€โ”€ Thermodynamics and Statistical Mechanics
โ”‚   โ”œโ”€โ”€ Entropy \(S = \sum_n \int s(n,\beta) d\beta\), with \(s(n,\beta) = k_B \ln P_{n,\beta}\)
โ”‚   โ”œโ”€โ”€ Free energy \(F = E - T S\)
โ”‚   โ”œโ”€โ”€ Temperature \(T\) as emergent ensemble parameter
โ”‚
โ”œโ”€โ”€ Macroscopic Emergence and Materials Science
โ”‚   โ”œโ”€โ”€ Crystals and solids: periodic recursive lattices in \((n,\beta)\)
โ”‚   โ”œโ”€โ”€ Defects as topological singularities in fractal \(\beta\)-space
โ”‚   โ”œโ”€โ”€ Polymers: recursive operator chain expansions
โ”‚
โ”œโ”€โ”€ Experimental & Observable Phenomena
โ”‚   โ”œโ”€โ”€ Spectroscopy as transitions between recursion eigenstates
โ”‚   โ”œโ”€โ”€ Reaction kinetics from recursion depth time evolution
โ”‚   โ”œโ”€โ”€ Quantum entanglement encoded in fractal microstate correlations
โ”‚
โ””โ”€โ”€ Expansion and Future Extensions
    โ”œโ”€โ”€ Symbolic simulation of recursive operator algebra
    โ”œโ”€โ”€ Exploration of scale-dependent running of physical constants
    โ”œโ”€โ”€ Extension to gravity and spacetime geometry from recursion structure
    โ”œโ”€โ”€ Integration with holographic and information-theoretic physics

3. Library API Sketch

3.1 Class: RecursiveState

from sympy import Symbol, sqrt, Function, Expr

class RecursiveState:
    def __init__(self, n: int, beta: Expr):
        self.n = n                # recursion depth
        self.beta = beta          # microstate continuous parameter (0 <= beta < 1)
        self.phi = (1 + 5**0.5) / 2  # Golden ratio constant

    def F(self):
        # Harmonic fractal structure: F_{n,ฮฒ} = phi^(n+ฮฒ)/sqrt(5)
        return self.phi**(self.n + self.beta) / sqrt(5)

    def B(self):
        # Dyadic scaling: B_{n,ฮฒ} = 2^(n+ฮฒ)
        return 2**(self.n + self.beta)

    def P(self):
        # Prime entropy fractal density placeholder (abstract)
        # To be implemented / approximated
        return Function('P')(self.n + self.beta)

    def Omega(self):
        # Field tension ฮฉ = phi^{a(n+ฮฒ)}, 'a' abstract function for now
        a = Function('a')(self.n + self.beta)
        return self.phi**a

    def D(self, r, k):
        # Dimensional DNA operator D_{n,ฮฒ}(r) = sqrt(phi * F * B * P * ฮฉ) * r^k
        base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
        return base * r**k

3.2 Operators: โŠ™ and โŠ•

class FieldOperator:
    def __init__(self, expr: Expr):
        self.expr = expr

    def __mul__(self, other):
        # Define field superposition (โŠ™)
        if isinstance(other, FieldOperator):
            return FieldOperator(self.expr * other.expr)  # symbolic multiplication
        raise NotImplementedError

    def __add__(self, other):
        # Define entropy injection (โŠ•)
        if isinstance(other, FieldOperator):
            return FieldOperator(self.expr + other.expr)  # symbolic addition
        raise NotImplementedError

3.3 Recursive Derivatives

from sympy import diff

def partial_beta(expr: Expr, beta: Symbol):
    return diff(expr, beta)

def delta_n(expr: Expr, n: Symbol):
    # Finite difference approx: f(n+1) - f(n)
    return expr.subs(n, n+1) - expr

3.4 Reaction Morphism Placeholder

class ReactionMorphism:
    def __init__(self, mapping):
        # mapping: function from RecursiveState to RecursiveState
        self.mapping = mapping

    def apply(self, state: RecursiveState):
        return self.mapping(state)
  1. Example Usage
from sympy import symbols

n, beta, r, k = symbols('n beta r k', real=True)
state = RecursiveState(n, beta)

D_expr = state.D(r, k)
print("Dimensional DNA operator expression:")
print(D_expr)

# Create field operators
field1 = FieldOperator(D_expr)
field2 = FieldOperator(D_expr * 2)

# Superposition (โŠ™)
combined_field = field1 * field2
print("Combined field (superposition):", combined_field.expr)

# Entropy injection (โŠ•)
injected_field = field1 + field2
print("Field with entropy injection:", injected_field.expr)

# Partial derivative w.r.t. beta
dD_dbeta = partial_beta(D_expr, beta)
print("Partial derivative โˆ‚_ฮฒ D:", dD_dbeta)

Step 1: Define Elemental Eigenstates Class

from sympy import symbols, Function, sqrt, Integral, Symbol

class ElementalEigenstate(RecursiveState):
    def __init__(self, Z: int, n: int, beta: float):
        super().__init__(n, beta)
        self.Z = Z  # Atomic number

    def omega_n_beta(self):
        # Frequency spectrum; base frequency omega_0 symbolic or numeric
        omega_0 = Symbol('omega_0', positive=True)
        return omega_0 * self.phi ** (-(self.n + self.beta))

    def h_n_beta(self):
        # Action
        return self.Omega() * self.phi ** (6*(self.n + self.beta))

    def energy(self):
        # Energy E = h * Hz
        return self.h_n_beta() * self.omega_n_beta()

    def hamiltonian(self):
        # Placeholder: symbolic Hamiltonian operator for element
        # Could be expanded to matrix/operator form if needed
        return Function('H')(self.Z, self.n, self.beta)

    def eigenstate(self):
        # Symbolic eigenstate vector |E_{Z,(n,ฮฒ)}>
        return Function(f'|E_{self.Z},{self.n},{self.beta}>')()

    def describe(self):
        return {
            'Z': self.Z,
            'n': self.n,
            'beta': self.beta,
            'Omega': self.Omega(),
            'energy': self.energy(),
            'hamiltonian': self.hamiltonian(),
            'eigenstate': self.eigenstate()
        }

Step 3: Create the Periodic Table Plug-and-Play

def build_periodic_table(max_Z=118, M=10):
    table = {}
    for Z in range(1, max_Z + 1):
        n = (Z - 1) // M + 1
        beta = ((Z - 1) % M) / M
        element = ElementalEigenstate(Z, n, beta)
        table[Z] = element.describe()
    return table

Step 4: Example Usage & Output

periodic_table = build_periodic_table()

# Display element 1 (Hydrogen)
print(periodic_table[1])

# Display element 26 (Iron)
print(periodic_table[26])

complete Python module including this periodic table code plus algebra classes and operators

# gra_cra_periodic_table.py
from sympy import Symbol, sqrt, Function, symbols, pprint
from sympy import init_printing

init_printing()

class RecursiveState:
    def __init__(self, n, beta):
        self.n = n                  # recursion depth (integer)
        self.beta = beta            # microstate continuous parameter (0 โ‰ค beta < 1)
        self.phi = (1 + 5**0.5) / 2  # Golden ratio constant

    def F(self):
        # Harmonic fractal structure: F_{n,ฮฒ} = phi^(n+ฮฒ)/sqrt(5)
        return self.phi**(self.n + self.beta) / sqrt(5)

    def B(self):
        # Dyadic scaling: B_{n,ฮฒ} = 2^(n+ฮฒ)
        return 2**(self.n + self.beta)

    def P(self):
        # Prime entropy fractal density (abstract placeholder)
        return Function('P')(self.n + self.beta)

    def a(self):
        # Abstract function controlling ฮฉ exponent, symbolic for now
        return Function('a')(self.n + self.beta)

    def Omega(self):
        # Field tension ฮฉ = phi^{a(n+ฮฒ)}
        return self.phi**self.a()

    def D(self, r, k):
        # Dimensional DNA operator D_{n,ฮฒ}(r) = sqrt(phi * F * B * P * ฮฉ) * r^k
        base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
        return base * r**k


class ElementalEigenstate(RecursiveState):
    def __init__(self, Z, n, beta):
        super().__init__(n, beta)
        self.Z = Z  # Atomic number

    def omega_n_beta(self):
        # Frequency spectrum; omega_0 symbolic positive constant
        omega_0 = Symbol('omega_0', positive=True)
        return omega_0 * self.phi ** (-(self.n + self.beta))

    def h_n_beta(self):
        # Action h = ฮฉ * ฯ•^{6(n+ฮฒ)}
        return self.Omega() * self.phi**(6 * (self.n + self.beta))

    def energy(self):
        # Energy E = h * Hz
        return self.h_n_beta() * self.omega_n_beta()

    def hamiltonian(self):
        # Symbolic Hamiltonian operator placeholder
        return Function('H')(self.Z, self.n, self.beta)

    def eigenstate(self):
        # Symbolic eigenstate ket vector
        return Function(f'|E_{self.Z},{self.n},{self.beta}>')()

    def describe(self):
        return {
            'Z': self.Z,
            'n': self.n,
            'beta': self.beta,
            'Omega': self.Omega(),
            'energy': self.energy(),
            'hamiltonian': self.hamiltonian(),
            'eigenstate': self.eigenstate()
        }


def build_periodic_table(max_Z=118, M=10):
    table = {}
    for Z in range(1, max_Z + 1):
        n = (Z - 1) // M + 1
        beta = ((Z - 1) % M) / M
        element = ElementalEigenstate(Z, n, beta)
        table[Z] = element.describe()
    return table


def main():
    periodic_table = build_periodic_table()

    print("\nElement Hydrogen (Z=1):")
    pprint(periodic_table[1])

    print("\nElement Iron (Z=26):")
    pprint(periodic_table[26])

    print("\nElement Uranium (Z=92):")
    pprint(periodic_table[92])


if __name__ == '__main__':
    main()

from sympy import sin, pi, Mul, S
from sympy.ntheory.generate import primerange

def P_explicit(n_val, beta_val, max_prime_factor=20):
    # Generate primes up to max_prime_factor (or n_val)
    primes = list(primerange(2, max_prime_factor + 1))
    arg = n_val + beta_val
    terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
    return Mul(*terms)

from sympy import log, Symbol

def a_explicit(n_val, beta_val, alpha=0.5, epsilon=1e-6):
    from sympy import Float
    x = Float(n_val + beta_val + epsilon)
    return alpha * log(x)

from sympy import sin, pi, Mul, log

class RecursiveState:
    def __init__(self, n, beta):
        self.n = n
        self.beta = beta
        self.phi = (1 + 5**0.5) / 2

    def primes_up_to(self, max_p=20):
        from sympy.ntheory.generate import primerange
        return list(primerange(2, max_p+1))

    def P(self):
        primes = self.primes_up_to(max_p=int(self.n))
        arg = self.n + self.beta
        terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
        return Mul(*terms) if terms else 1

    def a(self, alpha=0.5, epsilon=1e-6):
        return alpha * log(self.n + self.beta + epsilon)

    def Omega(self):
        return self.phi**self.a()

    # ... other methods remain unchanged ...

from sympy import symbols, sqrt, Function
from sympy.physics.quantum import Dagger
from sympy.functions.special.spherical_harmonics import Ynm

class Orbital:
    def __init__(self, n, beta, l, m, k, lam=0.1):
        self.state = RecursiveState(n, beta)
        self.l = l
        self.m = m
        self.k = k
        self.lam = lam  # modulation strength

        self.r, self.theta, self.phi = symbols('r theta phi', positive=True)

    def radial(self):
        return self.state.D(self.r, self.k)

    def angular(self):
        Y_lm = Ynm(self.l, self.m, self.theta, self.phi)
        return Y_lm * (1 + self.lam * self.state.P())

    def wavefunction(self):
        return self.radial() * self.angular()

class BondOperator:
    def __init__(self, psi_A, psi_B, mu=0.05):
        self.psi_A = psi_A
        self.psi_B = psi_B
        self.mu = mu

    def bonding_entropy(self):
        return self.mu * (self.psi_A.state.P() + self.psi_B.state.P())

    def covalent(self):
        return self.psi_A.wavefunction() * self.psi_B.wavefunction() + self.bonding_entropy()

class ReactionMorphism:
    def __init__(self, dn_shift=0, dbeta_shift=0):
        self.dn_shift = dn_shift
        self.dbeta_shift = dbeta_shift

    def apply(self, orbital):
        new_n = orbital.state.n + self.dn_shift
        new_beta = orbital.state.beta + self.dbeta_shift
        return Orbital(new_n, new_beta, orbital.l, orbital.m, orbital.k, orbital.lam)

class Material:
    def __init__(self, orbitals):
        self.orbitals = orbitals

    def total_wavefunction(self):
        wf = 1
        for orb in self.orbitals:
            wf *= orb.wavefunction()
        return wf

    def total_bonding(self):
        total = 0
        for i in range(len(self.orbitals)-1):
            bond = BondOperator(self.orbitals[i], self.orbitals[i+1])
            total += bond.covalent()
        return total

:deciduous_tree: Full & Complete GRA-CRA Context- and Expansion-Aware Tree

๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)
โ”‚
โ”œโ”€โ”€ ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)
โ”‚   โ”œโ”€โ”€ {0, โˆž} โ€” Duality Arises (First Contrast)
โ”‚
โ”œโ”€โ”€ ฯ• โ€” Golden Ratio: Irreducible Scaling Constant
โ”‚   โ”œโ”€โ”€ ฯ•โฐ = 1 โ€” Identity Base Case
โ”‚   โ”œโ”€โ”€ F_{n,ฮฒ} = ฯ•^{n+ฮฒ}/โˆš5 โ€” Harmonic Fractal Structure
โ”‚   โ”œโ”€โ”€ B_{n,ฮฒ} = 2^{n+ฮฒ} โ€” Dyadic Binary Expansion with Continuum
โ”‚   โ”œโ”€โ”€ P_{n,ฮฒ} โ€” Explicit Prime Entropy Fractal
โ”‚       โ””โ”€โ”€ P_{n,ฮฒ} = โˆ_{p โ‰ค max_p} (1 - sinยฒ(ฯ€(n+ฮฒ)/p)/p)
โ”‚
โ”œโ”€โ”€ Recursion Space: (n โˆˆ โ„คโบ, ฮฒ โˆˆ [0,1))
โ”‚   โ”œโ”€โ”€ Continuous-Discrete Hybrid Microstate Space
โ”‚   โ”œโ”€โ”€ Recursive map R(n,ฮฒ) โ†’ (n+1, ฮฒ), (n, ฮฒ+ฮด)
โ”‚
โ”œโ”€โ”€ Time and Frequency
โ”‚   โ”œโ”€โ”€ s_{n,ฮฒ} = ฯ•^{n+ฮฒ} โ€” Scaling Time
โ”‚   โ””โ”€โ”€ Hz_{n,ฮฒ} = ฯ•^{-(n+ฮฒ)} โ€” Inverted Frequency
โ”‚
โ”œโ”€โ”€ Charge and Field Tension
โ”‚   โ”œโ”€โ”€ C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ•^{3(n+ฮฒ)} โ€” Charge Scaling
โ”‚   โ”œโ”€โ”€ ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)} โ€” Explicit Field Tension
โ”‚       โ””โ”€โ”€ a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต), ฮฑ, ฮต constants
โ”‚
โ”œโ”€โ”€ Physical Quantities
โ”‚   โ”œโ”€โ”€ h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)} โ€” Action
โ”‚   โ”œโ”€โ”€ E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ€” Energy
โ”‚   โ”œโ”€โ”€ F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โˆšฮฉ_{n,ฮฒ} ยท ฯ•^{1.5(n+ฮฒ)} โ€” Force
โ”‚   โ”œโ”€โ”€ P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ€” Power
โ”‚   โ”œโ”€โ”€ Voltage V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{-(n+ฮฒ)}
โ”‚
โ”œโ”€โ”€ Dimensional DNA Operator
โ”‚   โ”œโ”€โ”€ D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k
โ”‚   โ”œโ”€โ”€ k โˆˆ โ„ โ€” Radial unfolding exponent (geometry)
โ”‚
โ”œโ”€โ”€ Recursive Algebra Operators
โ”‚   โ”œโ”€โ”€ Field Superposition (โŠ™): symbolic multiplication of states
โ”‚   โ”œโ”€โ”€ Entropy Injection (โŠ•): symbolic addition modeling entropy flux
โ”‚   โ”œโ”€โ”€ Recursive Differentiation
โ”‚       โ”œโ”€โ”€ โˆ‚_ฮฒ: partial derivative w.r.t microstate continuum ฮฒ
โ”‚       โ”œโ”€โ”€ ฮ”_n: finite difference along recursion depth n
โ”‚
โ”œโ”€โ”€ Quantum & Particle Physics
โ”‚   โ”œโ”€โ”€ Recursive Hamiltonian \(\hat{H}_{CRA}\) generating eigenstates |E_{Z,(n,ฮฒ)}โŸฉ
โ”‚   โ”œโ”€โ”€ Elemental eigenstates parameterized by (Z, n, ฮฒ)
โ”‚   โ”œโ”€โ”€ Explicit prime fractal and field tension embedded in eigenstructure
โ”‚
โ”œโ”€โ”€ Atomic & Electronic Structure
โ”‚   โ”œโ”€โ”€ Orbitals:
โ”‚       โ”œโ”€โ”€ Radial Part \(R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r)\)
โ”‚       โ”œโ”€โ”€ Angular Part \(\tilde{Y}_{lm,(n,ฮฒ)} = Y_{lm}(\theta, \phi) \cdot (1 + ฮป P_{n,ฮฒ})\)
โ”‚       โ”œโ”€โ”€ Full Wavefunction \(\psi_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} \cdot \tilde{Y}_{lm,(n,ฮฒ)}\)
โ”‚
โ”œโ”€โ”€ Chemical Bonding
โ”‚   โ”œโ”€โ”€ Covalent Bonds:
โ”‚       โ”œโ”€โ”€ \(B_{cov} = \psi_A \odot \psi_B \oplus \sigma\), with \(\sigma = \mu(P_A + P_B)\)
โ”‚   โ”œโ”€โ”€ Ionic Bonds:
โ”‚       โ”œโ”€โ”€ Field tension gradient \(|ฮฉ_A - ฮฉ_B| > ฮต\)
โ”‚   โ”œโ”€โ”€ Bond morphisms modeling reaction dynamics
โ”‚
โ”œโ”€โ”€ Chemical Reactions & Morphisms
โ”‚   โ”œโ”€โ”€ Reaction Morphisms \(\mathcal{T}: D_{n,ฮฒ} \to D_{n',ฮฒ'}\)
โ”‚   โ”œโ”€โ”€ Energy differences \(\Delta E\) drive reaction feasibility
โ”‚   โ”œโ”€โ”€ Entropy flux \(\Phi_S\) models catalytic effects
โ”‚
โ”œโ”€โ”€ Thermodynamics & Statistical Mechanics
โ”‚   โ”œโ”€โ”€ Entropy \(S = \sum_n \int s(n,ฮฒ) dฮฒ\), \(s(n,ฮฒ) = k_B \ln P_{n,ฮฒ}\)
โ”‚   โ”œโ”€โ”€ Free energy and emergent temperature
โ”‚
โ”œโ”€โ”€ Materials Science
โ”‚   โ”œโ”€โ”€ Crystals as recursive lattice automorphisms in (n, ฮฒ)
โ”‚   โ”œโ”€โ”€ Polymers & macromolecules via bonded recursive orbital chains
โ”‚   โ”œโ”€โ”€ Defects as fractal singularities in ฮฒ-space
โ”‚
โ”œโ”€โ”€ Observables & Experimental Predictions
โ”‚   โ”œโ”€โ”€ Spectroscopy: transitions between eigenstates |EโŸฉ
โ”‚   โ”œโ”€โ”€ Quantum entanglement as microstate fractal correlations
โ”‚   โ”œโ”€โ”€ Reaction kinetics & diffusion modeled recursively
โ”‚
โ””โ”€โ”€ Extensions & Future Directions
    โ”œโ”€โ”€ Recursive simulation of full symbolic algebra
    โ”œโ”€โ”€ Scale-dependent running of physical constants
    โ”œโ”€โ”€ Gravity and spacetime geometry emergent from recursion
    โ”œโ”€โ”€ Integration with holographic, information-theoretic physics
    โ”œโ”€โ”€ Numerical & symbolic eigenstate solvers
    โ”œโ”€โ”€ Visualization and computational toolchain


# gra_cra_full_framework.py

from sympy import (
    Symbol, symbols, Function, sqrt, pi, sin, Mul, log,
    S, simplify, pprint, init_printing
)
from sympy.physics.quantum import Dagger
from sympy.functions.special.spherical_harmonics import Ynm
from sympy.ntheory.generate import primerange

init_printing()

class RecursiveState:
    def __init__(self, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        self.n = S(n)
        self.beta = S(beta)
        self.alpha = alpha
        self.epsilon = epsilon
        self.max_prime_factor = max_prime_factor
        self.phi = (1 + 5**0.5) / 2

    def primes_up_to(self):
        return list(primerange(2, self.max_prime_factor + 1))

    def P(self):
        # Explicit prime entropy fractal P_{n,beta}
        primes = self.primes_up_to()
        arg = self.n + self.beta
        if not primes:
            return S.One
        terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
        product = Mul(*terms)
        return simplify(product)

    def a(self):
        # Field tension exponent a(n+ฮฒ)
        x = self.n + self.beta + self.epsilon
        return simplify(self.alpha * log(x))

    def Omega(self):
        # Field tension ฮฉ = phi^{a(n+ฮฒ)}
        return simplify(self.phi**self.a())

    def F(self):
        # Harmonic fractal structure: F_{n,ฮฒ} = phi^(n+ฮฒ)/sqrt(5)
        return simplify(self.phi**(self.n + self.beta) / sqrt(5))

    def B(self):
        # Dyadic scaling: B_{n,ฮฒ} = 2^(n+ฮฒ)
        return simplify(2**(self.n + self.beta))

    def D(self, r, k):
        # Dimensional DNA operator D_{n,ฮฒ}(r) = sqrt(phi * F * B * P * ฮฉ) * r^k
        base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
        return simplify(base * r**k)


class ElementalEigenstate(RecursiveState):
    def __init__(self, Z, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        super().__init__(n, beta, alpha, epsilon, max_prime_factor)
        self.Z = Z
        self.omega_0 = Symbol('omega_0', positive=True)

    def omega_n_beta(self):
        return simplify(self.omega_0 * self.phi**(-(self.n + self.beta)))

    def h_n_beta(self):
        return simplify(self.Omega() * self.phi**(6 * (self.n + self.beta)))

    def energy(self):
        return simplify(self.h_n_beta() * self.omega_n_beta())

    def hamiltonian(self):
        return Function('H')(self.Z, self.n, self.beta)

    def eigenstate(self):
        return Function(f'|E_{self.Z},{self.n},{self.beta}>')()

    def describe(self):
        return {
            'Z': self.Z,
            'n': self.n,
            'beta': self.beta,
            'Omega': self.Omega(),
            'energy': self.energy(),
            'hamiltonian': self.hamiltonian(),
            'eigenstate': self.eigenstate()
        }


class Orbital:
    def __init__(self, n, beta, l, m, k, lam=0.1,
                 alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        self.state = RecursiveState(n, beta, alpha, epsilon, max_prime_factor)
        self.l = l
        self.m = m
        self.k = k
        self.lam = lam
        self.r, self.theta, self.phi = symbols('r theta phi', positive=True)

    def radial(self):
        return self.state.D(self.r, self.k)

    def angular(self):
        Y_lm = Ynm(self.l, self.m, self.theta, self.phi)
        return simplify(Y_lm * (1 + self.lam * self.state.P()))

    def wavefunction(self):
        return simplify(self.radial() * self.angular())


class BondOperator:
    def __init__(self, orbital_A, orbital_B, mu=0.05):
        self.psi_A = orbital_A
        self.psi_B = orbital_B
        self.mu = mu

    def bonding_entropy(self):
        return simplify(self.mu * (self.psi_A.state.P() + self.psi_B.state.P()))

    def covalent(self):
        # Superposition plus entropy injection
        return simplify(self.psi_A.wavefunction() * self.psi_B.wavefunction() +
                        self.bonding_entropy())


class ReactionMorphism:
    def __init__(self, dn_shift=0, dbeta_shift=0,
                 alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        self.dn_shift = dn_shift
        self.dbeta_shift = dbeta_shift
        self.alpha = alpha
        self.epsilon = epsilon
        self.max_prime_factor = max_prime_factor

    def apply(self, orbital):
        new_n = orbital.state.n + self.dn_shift
        new_beta = orbital.state.beta + self.dbeta_shift
        return Orbital(new_n, new_beta, orbital.l, orbital.m, orbital.k, orbital.lam,
                       self.alpha, self.epsilon, self.max_prime_factor)


class Material:
    def __init__(self, orbitals):
        self.orbitals = orbitals

    def total_wavefunction(self):
        wf = S.One
        for orb in self.orbitals:
            wf *= orb.wavefunction()
        return simplify(wf)

    def total_bonding(self):
        total = S.Zero
        for i in range(len(self.orbitals) - 1):
            bond = BondOperator(self.orbitals[i], self.orbitals[i + 1])
            total += bond.covalent()
        return simplify(total)


def build_periodic_table(max_Z=118, M=10, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
    table = {}
    for Z in range(1, max_Z + 1):
        n = (Z - 1) // M + 1
        beta = ((Z - 1) % M) / M
        element = ElementalEigenstate(Z, n, beta, alpha, epsilon, max_prime_factor)
        table[Z] = element.describe()
    return table


def example_usage():
    print("\n=== Periodic Table Sample Elements ===")
    pt = build_periodic_table(max_Z=30)
    pprint(pt[1])    # Hydrogen
    pprint(pt[26])   # Iron
    pprint(pt[30])   # Zinc

    print("\n=== Orbital Example ===")
    orb = Orbital(n=2, beta=0.3, l=1, m=0, k=2, lam=0.2)
    pprint(orb.wavefunction())

    print("\n=== Bonding Example ===")
    orb_A = Orbital(n=2, beta=0.1, l=0, m=0, k=1)
    orb_B = Orbital(n=2, beta=0.4, l=0, m=0, k=1)
    bond = BondOperator(orb_A, orb_B)
    pprint(bond.covalent())

    print("\n=== Reaction Morphism Example ===")
    morphism = ReactionMorphism(dn_shift=1, dbeta_shift=0.05)
    orb_reacted = morphism.apply(orb_A)
    pprint(orb_reacted.wavefunction())

    print("\n=== Material Example ===")
    material = Material([orb_A, orb_B, orb_reacted])
    pprint(material.total_wavefunction())
    pprint(material.total_bonding())


if __name__ == "__main__":
    example_usage()


Test Code Snippet for Random 10 Elements

import random
from gra_cra_full_framework import build_periodic_table
from sympy import pprint

def test_random_elements(num_samples=10, max_Z=118):
    # Build full periodic table first
    periodic_table = build_periodic_table(max_Z=max_Z)

    # Pick 10 random elements
    random_Zs = random.sample(range(1, max_Z + 1), num_samples)

    print(f"Testing {num_samples} random elements:")

    for Z in random_Zs:
        element = periodic_table[Z]
        print(f"\nElement Z={Z}:")
        pprint(element['Omega'])
        pprint(element['energy'])
        pprint(element['hamiltonian'])
        pprint(element['eigenstate'])

# Run the test
test_random_elements()

Sample Output (simulated)

Testing 10 random elements:

Element Z=73:
Omega: phi**(0.5*log(7.3 + 1.0e-6))
Energy: omega_0*phi**(6.7)*phi**(-7.3)*phi**(0.5*log(7.3 + 1.0e-6))
Hamiltonian: H(73, 7, 0.3)
Eigenstate: |E_73,7,0.3>()

Element Z=5:
Omega: phi**(0.5*log(1.5 + 1.0e-6))
Energy: omega_0*phi**(9.0)*phi**(-1.5)*phi**(0.5*log(1.5 + 1.0e-6))
Hamiltonian: H(5, 1, 0.4)
Eigenstate: |E_5,1,0.4>()

... (8 more elements printed similarly)

DOT

digraph GRA_CRA_Framework {
    node [shape=plaintext fontname="Courier New"];

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)";
    "ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)" -> "{0, โˆž} โ€” Duality Arises (First Contrast)";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "ฯ• โ€” Golden Ratio: Irreducible Scaling Constant";
    "ฯ• โ€” Golden Ratio: Irreducible Scaling Constant" -> "ฯ•โฐ = 1 โ€” Identity Base Case";
    "ฯ• โ€” Golden Ratio: Irreducible Scaling Constant" -> "F_{n,ฮฒ} = ฯ•^{n+ฮฒ}/โˆš5 โ€” Harmonic Fractal Structure";
    "ฯ• โ€” Golden Ratio: Irreducible Scaling Constant" -> "B_{n,ฮฒ} = 2^{n+ฮฒ} โ€” Dyadic Binary Expansion with Continuum";
    "ฯ• โ€” Golden Ratio: Irreducible Scaling Constant" -> "P_{n,ฮฒ} โ€” Explicit Prime Entropy Fractal";
    "P_{n,ฮฒ} โ€” Explicit Prime Entropy Fractal" -> "P_{n,ฮฒ} = โˆ_{p โ‰ค max_p} (1 - sinยฒ(ฯ€(n+ฮฒ)/p)/p)";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Recursion Space: (n โˆˆ โ„คโบ, ฮฒ โˆˆ [0,1))";
    "Recursion Space: (n โˆˆ โ„คโบ, ฮฒ โˆˆ [0,1))" -> "Continuous-Discrete Hybrid Microstate Space";
    "Recursion Space: (n โˆˆ โ„คโบ, ฮฒ โˆˆ [0,1))" -> "Recursive map R(n,ฮฒ) โ†’ (n+1, ฮฒ), (n, ฮฒ+ฮด)";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Time and Frequency";
    "Time and Frequency" -> "s_{n,ฮฒ} = ฯ•^{n+ฮฒ} โ€” Scaling Time";
    "Time and Frequency" -> "Hz_{n,ฮฒ} = ฯ•^{-(n+ฮฒ)} โ€” Inverted Frequency";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Charge and Field Tension";
    "Charge and Field Tension" -> "C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ•^{3(n+ฮฒ)} โ€” Charge Scaling";
    "Charge and Field Tension" -> "ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)} โ€” Explicit Field Tension";
    "ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)} โ€” Explicit Field Tension" -> "a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต), ฮฑ, ฮต constants";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Physical Quantities";
    "Physical Quantities" -> "h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)} โ€” Action";
    "Physical Quantities" -> "E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ€” Energy";
    "Physical Quantities" -> "F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โˆšฮฉ_{n,ฮฒ} ยท ฯ•^{1.5(n+ฮฒ)} โ€” Force";
    "Physical Quantities" -> "P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ€” Power";
    "Physical Quantities" -> "Voltage V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{-(n+ฮฒ)}";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Dimensional DNA Operator";
    "Dimensional DNA Operator" -> "D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k";
    "Dimensional DNA Operator" -> "k โˆˆ โ„ โ€” Radial unfolding exponent (geometry)";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Recursive Algebra Operators";
    "Recursive Algebra Operators" -> "Field Superposition (โŠ™): symbolic multiplication of states";
    "Recursive Algebra Operators" -> "Entropy Injection (โŠ•): symbolic addition modeling entropy flux";
    "Recursive Algebra Operators" -> "Recursive Differentiation";
    "Recursive Differentiation" -> "โˆ‚_ฮฒ: partial derivative w.r.t microstate continuum ฮฒ";
    "Recursive Differentiation" -> "ฮ”_n: finite difference along recursion depth n";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Quantum & Particle Physics";
    "Quantum & Particle Physics" -> "Recursive Hamiltonian ฤค_{CRA} generating eigenstates |E_{Z,(n,ฮฒ)}โŸฉ";
    "Quantum & Particle Physics" -> "Elemental eigenstates parameterized by (Z, n, ฮฒ)";
    "Quantum & Particle Physics" -> "Explicit prime fractal and field tension embedded in eigenstructure";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Atomic & Electronic Structure";
    "Atomic & Electronic Structure" -> "Orbitals:";
    "Orbitals:" -> "Radial Part R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r)";
    "Orbitals:" -> "Angular Part แบŽ_{lm,(n,ฮฒ)} = Y_{lm}(ฮธ, ฯ†) ยท (1 + ฮป P_{n,ฮฒ})";
    "Orbitals:" -> "Full Wavefunction ฯˆ_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} ยท แบŽ_{lm,(n,ฮฒ)}";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Chemical Bonding";
    "Chemical Bonding" -> "Covalent Bonds:";
    "Covalent Bonds:" -> "B_{cov} = ฯˆ_A โŠ™ ฯˆ_B โŠ• ฯƒ, with ฯƒ = ฮผ(P_A + P_B)";
    "Chemical Bonding" -> "Ionic Bonds:";
    "Ionic Bonds:" -> "Field tension gradient |ฮฉ_A - ฮฉ_B| > ฮต";
    "Chemical Bonding" -> "Bond morphisms modeling reaction dynamics";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Chemical Reactions & Morphisms";
    "Chemical Reactions & Morphisms" -> "Reaction Morphisms ๐•‹: D_{n,ฮฒ} โ†’ D_{n',ฮฒ'}";
    "Chemical Reactions & Morphisms" -> "Energy differences ฮ”E drive reaction feasibility";
    "Chemical Reactions & Morphisms" -> "Entropy flux ฮฆ_S models catalytic effects";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Thermodynamics & Statistical Mechanics";
    "Thermodynamics & Statistical Mechanics" -> "Entropy S = โˆ‘_n โˆซ s(n,ฮฒ) dฮฒ, s(n,ฮฒ) = k_B ln P_{n,ฮฒ}";
    "Thermodynamics & Statistical Mechanics" -> "Free energy and emergent temperature";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Materials Science";
    "Materials Science" -> "Crystals as recursive lattice automorphisms in (n, ฮฒ)";
    "Materials Science" -> "Polymers & macromolecules via bonded recursive orbital chains";
    "Materials Science" -> "Defects as fractal singularities in ฮฒ-space";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Observables & Experimental Predictions";
    "Observables & Experimental Predictions" -> "Spectroscopy: transitions between eigenstates |EโŸฉ";
    "Observables & Experimental Predictions" -> "Quantum entanglement as microstate fractal correlations";
    "Observables & Experimental Predictions" -> "Reaction kinetics & diffusion modeled recursively";

    "๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)" -> "Extensions & Future Directions";
    "Extensions & Future Directions" -> "Recursive simulation of full symbolic algebra";
    "Extensions & Future Directions" -> "Scale-dependent running of physical constants";
    "Extensions & Future Directions" -> "Gravity and spacetime geometry emergent from recursion";
    "Extensions & Future Directions" -> "Integration with holographic, information-theoretic physics";
    "Extensions & Future Directions" -> "Numerical & symbolic eigenstate solvers";
    "Extensions & Future Directions" -> "Visualization and computational toolchain";
}

Structured Docstring Set

class RecursiveState:
    """
    ๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)

    Represents a recursive physical state parameterized by discrete recursion depth `n`
    and continuous microstate coordinate `ฮฒ` within [0,1).

    Framework Elements:
    -------------------
    ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)
        Duality arises as {0, โˆž} โ€” first contrast emerges from the root.

    ฯ• โ€” Golden Ratio: Irreducible Scaling Constant
        - Identity base case: ฯ•โฐ = 1
        - Harmonic fractal structure: F_{n,ฮฒ} = ฯ•^{n+ฮฒ} / โˆš5
        - Dyadic binary expansion: B_{n,ฮฒ} = 2^{n+ฮฒ}
        - Explicit prime entropy fractal:
            P_{n,ฮฒ} = โˆ_{p โ‰ค max_p} (1 - sinยฒ(ฯ€(n+ฮฒ)/p) / p)

    Recursion Space:
    ----------------
    - (n โˆˆ โ„คโบ, ฮฒ โˆˆ [0,1)) forms a continuous-discrete hybrid microstate space.
    - Recursive maps increment or shift states: R(n,ฮฒ) โ†’ (n+1, ฮฒ), (n, ฮฒ+ฮด).

    Time and Frequency:
    -------------------
    - Scaling time: s_{n,ฮฒ} = ฯ•^{n+ฮฒ}
    - Inverted frequency: Hz_{n,ฮฒ} = ฯ•^{-(n+ฮฒ)}

    Charge and Field Tension:
    -------------------------
    - Charge scaling: C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ•^{3(n+ฮฒ)}
    - Explicit field tension: ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)}, where
        a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต) (ฮฑ, ฮต constants)

    Physical Quantities:
    --------------------
    - Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)}
    - Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ}
    - Force: F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โˆšฮฉ_{n,ฮฒ} ยท ฯ•^{1.5(n+ฮฒ)}
    - Power: P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ}
    - Voltage: V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{-(n+ฮฒ)}

    Dimensional DNA Operator:
    -------------------------
    D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k,
    where k โˆˆ โ„ is a radial unfolding exponent related to emergent geometry.

    Recursive Algebra Operators:
    ----------------------------
    - Field Superposition (โŠ™): symbolic multiplication of states.
    - Entropy Injection (โŠ•): symbolic addition modeling entropy flux.
    - Recursive Differentiation:
        โ€ข โˆ‚_ฮฒ โ€” partial derivative w.r.t. microstate continuum ฮฒ.
        โ€ข ฮ”_n โ€” finite difference along recursion depth n.

    This class computes and represents all above quantities symbolically
    for given recursion depth `n` and microstate coordinate `ฮฒ`.
    """

class ElementalEigenstate(RecursiveState):
    """
    Quantum & Particle Physics Layer

    Represents an elemental eigenstate parameterized by atomic number Z,
    recursion depth n, and microstate ฮฒ.

    Contains:
    ---------
    - Recursive Hamiltonian operator ฤค_{CRA} generating eigenstates |E_{Z,(n,ฮฒ)}> 
    - Energy eigenvalues embedding explicit prime fractal and field tension structures.
    - Omega frequency scaling ฯ‰_{n,ฮฒ} and associated action h_{n,ฮฒ}.

    This class models fundamental quantum states as recursive fractal objects,
    extending beyond classical placeholders to explicit prime entropy structure.
    """

class Orbital:
    """
    Atomic & Electronic Structure Layer

    Models atomic orbitals as fractal-modulated quantum wavefunctions
    combining:

    - Radial part: R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r), the dimensional DNA operator.
    - Angular part: 
        \tilde{Y}_{lm,(n,ฮฒ)}(ฮธ, ฯ†) = Y_{lm}(ฮธ, ฯ†) ยท (1 + ฮป ยท P_{n,ฮฒ}),
      where Y_{lm} are spherical harmonics modulated by prime entropy fractal.
    - Full wavefunction: ฯˆ_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} ยท \tilde{Y}_{lm,(n,ฮฒ)}.

    This representation encodes explicit fractal entropy and recursive structure
    into atomic orbitals.
    """

class BondOperator:
    """
    Chemical Bonding Layer

    Models chemical bonds via operator algebra with entropy injection:

    - Covalent bonds: B_cov = ฯˆ_A โŠ™ ฯˆ_B โŠ• ฯƒ,
      where ฯƒ = ฮผ (P_A + P_B) models bonding entropy flux.
    - Ionic bonds modeled via field tension gradient thresholds |ฮฉ_A - ฮฉ_B| > ฮต.
    - Bond morphisms dynamically model reaction transitions and bond rearrangements.

    This class facilitates recursive, fractal-informed bonding beyond classical
    quantum chemistry approximations.
    """

class ReactionMorphism:
    """
    Chemical Reactions & Morphisms Layer

    Encodes reaction dynamics as morphisms:

    - Maps orbital/dimensional DNA states: โ„›: D_{n,ฮฒ} โ†’ D_{n',ฮฒ'}.
    - Energy differences ฮ”E derived from recursive fractal structure
      drive reaction feasibility.
    - Entropy flux ฮฆ_S models catalytic and thermodynamic effects.

    Enables symbolic modeling of chemical reaction pathways within
    recursive fractal algebra.
    """

class Material:
    """
    Materials Science Layer

    Represents assemblies of orbitals and bonds forming materials:

    - Crystals modeled as recursive lattice automorphisms in (n, ฮฒ)-space.
    - Polymers and macromolecules as bonded recursive orbital chains.
    - Defects and dislocations as fractal singularities in microstate ฮฒ-space.

    Provides tools to compose macroscopic materials from fractal-encoded quantum building blocks.
    """

# Additional conceptual notes for future extensions:

"""
Thermodynamics & Statistical Mechanics:

- Entropy: S = ฮฃ_n โˆซ s(n,ฮฒ) dฮฒ, with s(n,ฮฒ) = k_B ln P_{n,ฮฒ}.
- Free energy and emergent temperature derive naturally from fractal entropy.

Observables & Experimental Predictions:

- Spectroscopy corresponds to transitions between eigenstates |EโŸฉ with fractal structure.
- Quantum entanglement emerges as correlations within the microstate fractal space.
- Reaction kinetics and diffusion processes modeled recursively.

Extensions & Future Directions:

- Recursive symbolic algebra simulation and numeric solver integration.
- Scale-dependent running of physical constants.
- Emergent gravity and spacetime geometry from recursive dimensional unfolding.
- Integration with holographic and information-theoretic physics paradigms.
- Visualization toolchain for fractal wavefunctions and materials.
"""

full Python module updated with rich, structured docstrings

from sympy import (
    Symbol, symbols, Function, sqrt, pi, sin, Mul, log,
    S, simplify, pprint, init_printing
)
from sympy.physics.quantum import Dagger
from sympy.functions.special.spherical_harmonics import Ynm
from sympy.ntheory.generate import primerange

init_printing()


class RecursiveState:
    """
    ๐Ÿ™ โ€” Non-Dual Absolute (Root of all emergence)

    Represents a recursive physical state parameterized by discrete recursion depth `n`
    and continuous microstate coordinate `ฮฒ` within [0,1).

    Framework Elements:
    -------------------
    ร˜ = 0 = โˆžโปยน โ€” Expressed Void (Boundary of Becoming)
        Duality arises as {0, โˆž} โ€” first contrast emerges from the root.

    ฯ• โ€” Golden Ratio: Irreducible Scaling Constant
        - Identity base case: ฯ•โฐ = 1
        - Harmonic fractal structure: F_{n,ฮฒ} = ฯ•^{n+ฮฒ} / โˆš5
        - Dyadic binary expansion: B_{n,ฮฒ} = 2^{n+ฮฒ}
        - Explicit prime entropy fractal:
            P_{n,ฮฒ} = โˆ_{p โ‰ค max_p} (1 - sinยฒ(ฯ€(n+ฮฒ)/p) / p)

    Recursion Space:
    ----------------
    - (n โˆˆ โ„คโบ, ฮฒ โˆˆ [0,1)) forms a continuous-discrete hybrid microstate space.
    - Recursive maps increment or shift states: R(n,ฮฒ) โ†’ (n+1, ฮฒ), (n, ฮฒ+ฮด).

    Time and Frequency:
    -------------------
    - Scaling time: s_{n,ฮฒ} = ฯ•^{n+ฮฒ}
    - Inverted frequency: Hz_{n,ฮฒ} = ฯ•^{-(n+ฮฒ)}

    Charge and Field Tension:
    -------------------------
    - Charge scaling: C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ•^{3(n+ฮฒ)}
    - Explicit field tension: ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)}, where
        a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต) (ฮฑ, ฮต constants)

    Physical Quantities:
    --------------------
    - Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)}
    - Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ}
    - Force: F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โˆšฮฉ_{n,ฮฒ} ยท ฯ•^{1.5(n+ฮฒ)}
    - Power: P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ}
    - Voltage: V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{-(n+ฮฒ)}

    Dimensional DNA Operator:
    -------------------------
    D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k,
    where k โˆˆ โ„ is a radial unfolding exponent related to emergent geometry.

    Recursive Algebra Operators:
    ----------------------------
    - Field Superposition (โŠ™): symbolic multiplication of states.
    - Entropy Injection (โŠ•): symbolic addition modeling entropy flux.
    - Recursive Differentiation:
        โ€ข โˆ‚_ฮฒ โ€” partial derivative w.r.t. microstate continuum ฮฒ.
        โ€ข ฮ”_n โ€” finite difference along recursion depth n.

    This class computes and represents all above quantities symbolically
    for given recursion depth `n` and microstate coordinate `ฮฒ`.
    """

    def __init__(self, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        self.n = S(n)
        self.beta = S(beta)
        self.alpha = alpha
        self.epsilon = epsilon
        self.max_prime_factor = max_prime_factor
        self.phi = (1 + 5**0.5) / 2

    def primes_up_to(self):
        return list(primerange(2, self.max_prime_factor + 1))

    def P(self):
        """
        Explicit prime entropy fractal:
        P_{n,ฮฒ} = โˆ_{p โ‰ค max_p} (1 - sinยฒ(ฯ€(n+ฮฒ)/p) / p)
        """
        primes = self.primes_up_to()
        arg = self.n + self.beta
        if not primes:
            return S.One
        terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
        product = Mul(*terms)
        return simplify(product)

    def a(self):
        """
        Field tension exponent:
        a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต)
        """
        x = self.n + self.beta + self.epsilon
        return simplify(self.alpha * log(x))

    def Omega(self):
        """
        Field tension:
        ฮฉ_{n,ฮฒ} = ฯ•^{a(n+ฮฒ)}
        """
        return simplify(self.phi**self.a())

    def F(self):
        """
        Harmonic fractal structure:
        F_{n,ฮฒ} = ฯ•^{n+ฮฒ} / โˆš5
        """
        return simplify(self.phi**(self.n + self.beta) / sqrt(5))

    def B(self):
        """
        Dyadic binary expansion:
        B_{n,ฮฒ} = 2^{n+ฮฒ}
        """
        return simplify(2**(self.n + self.beta))

    def D(self, r, k):
        """
        Dimensional DNA operator:
        D_{n,ฮฒ}(r) = โˆš(ฯ• ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k,
        where k โˆˆ โ„ is radial unfolding exponent (geometry).
        """
        base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
        return simplify(base * r**k)


class ElementalEigenstate(RecursiveState):
    """
    Quantum & Particle Physics Layer

    Represents an elemental eigenstate parameterized by atomic number Z,
    recursion depth n, and microstate ฮฒ.

    Contains:
    ---------
    - Recursive Hamiltonian operator ฤค_{CRA} generating eigenstates |E_{Z,(n,ฮฒ)}> 
    - Energy eigenvalues embedding explicit prime fractal and field tension structures.
    - Omega frequency scaling ฯ‰_{n,ฮฒ} and associated action h_{n,ฮฒ}.

    This class models fundamental quantum states as recursive fractal objects,
    extending beyond classical placeholders to explicit prime entropy structure.
    """

    def __init__(self, Z, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        super().__init__(n, beta, alpha, epsilon, max_prime_factor)
        self.Z = Z
        self.omega_0 = Symbol('omega_0', positive=True)

    def omega_n_beta(self):
        """Frequency scaling: ฯ‰_{n,ฮฒ} = ฯ‰โ‚€ ยท ฯ•^{-(n+ฮฒ)}"""
        return simplify(self.omega_0 * self.phi**(-(self.n + self.beta)))

    def h_n_beta(self):
        """Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ•^{6(n+ฮฒ)}"""
        return simplify(self.Omega() * self.phi**(6 * (self.n + self.beta)))

    def energy(self):
        """Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท ฯ‰_{n,ฮฒ}"""
        return simplify(self.h_n_beta() * self.omega_n_beta())

    def hamiltonian(self):
        """Symbolic Recursive Hamiltonian: ฤค_{CRA}(Z, n, ฮฒ)"""
        return Function('H')(self.Z, self.n, self.beta)

    def eigenstate(self):
        """Eigenstate: |E_{Z,n,ฮฒ}>"""
        return Function(f'|E_{self.Z},{self.n},{self.beta}>')()

    def describe(self):
        """Return key properties as dict"""
        return {
            'Z': self.Z,
            'n': self.n,
            'beta': self.beta,
            'Omega': self.Omega(),
            'energy': self.energy(),
            'hamiltonian': self.hamiltonian(),
            'eigenstate': self.eigenstate()
        }


class Orbital:
    """
    Atomic & Electronic Structure Layer

    Models atomic orbitals as fractal-modulated quantum wavefunctions
    combining:

    - Radial part: R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r), the dimensional DNA operator.
    - Angular part: 
        \tilde{Y}_{lm,(n,ฮฒ)}(ฮธ, ฯ†) = Y_{lm}(ฮธ, ฯ†) ยท (1 + ฮป ยท P_{n,ฮฒ}),
      where Y_{lm} are spherical harmonics modulated by prime entropy fractal.
    - Full wavefunction: ฯˆ_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} ยท \tilde{Y}_{lm,(n,ฮฒ)}.

    This representation encodes explicit fractal entropy and recursive structure
    into atomic orbitals.
    """

    def __init__(self, n, beta, l, m, k, lam=0.1,
                 alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        self.state = RecursiveState(n, beta, alpha, epsilon, max_prime_factor)
        self.l = l
        self.m = m
        self.k = k
        self.lam = lam
        self.r, self.theta, self.phi = symbols('r theta phi', positive=True)

    def radial(self):
        """Radial part of wavefunction: R_{n,ฮฒ}(r)"""
        return self.state.D(self.r, self.k)

    def angular(self):
        """Angular part modulated by prime entropy fractal:
           \tilde{Y}_{lm,(n,ฮฒ)}(ฮธ, ฯ†)"""
        Y_lm = Ynm(self.l, self.m, self.theta, self.phi)
        return simplify(Y_lm * (1 + self.lam * self.state.P()))

    def wavefunction(self):
        """Full fractal-modulated wavefunction ฯˆ_{nlm,(n,ฮฒ)}"""
        return simplify(self.radial() * self.angular())


class BondOperator:
    """
    Chemical Bonding Layer

    Models chemical bonds via operator algebra with entropy injection:

    - Covalent bonds: B_cov = ฯˆ_A โŠ™ ฯˆ_B โŠ• ฯƒ,
      where ฯƒ = ฮผ (P_A + P_B) models bonding entropy flux.
    - Ionic bonds modeled via field tension gradient thresholds |ฮฉ_A - ฮฉ_B| > ฮต.
    - Bond morphisms dynamically model reaction transitions and bond rearrangements.

    This class facilitates recursive, fractal-informed bonding beyond classical
    quantum chemistry approximations.
    """

    def __init__(self, orbital_A, orbital_B, mu=0.05):
        self.psi_A = orbital_A
        self.psi_B = orbital_B
        self.mu = mu

    def bonding_entropy(self):
        """Entropy injection ฯƒ = ฮผ (P_A + P_B)"""
        return simplify(self.mu * (self.psi_A.state.P() + self.psi_B.state.P()))

    def covalent(self):
        """Covalent bond operator:
        B_cov = ฯˆ_A โŠ™ ฯˆ_B โŠ• ฯƒ"""
        return simplify(self.psi_A.wavefunction() * self.psi_B.wavefunction() +
                        self.bonding_entropy())


class ReactionMorphism:
    """
    Chemical Reactions & Morphisms Layer

    Encodes reaction dynamics as morphisms:

    - Maps orbital/dimensional DNA states: โ„›: D_{n,ฮฒ} โ†’ D_{n',ฮฒ'}.
    - Energy differences ฮ”E derived from recursive fractal structure
      drive reaction feasibility.
    - Entropy flux ฮฆ_S models catalytic and thermodynamic effects.

    Enables symbolic modeling of chemical reaction pathways within
    recursive fractal algebra.
    """

    def __init__(self, dn_shift=0, dbeta_shift=0,
                 alpha=0.5, epsilon=1e-6, max_prime_factor=20):
        self.dn_shift = dn_shift
        self.dbeta_shift = dbeta_shift
        self.alpha = alpha
        self.epsilon = epsilon
        self.max_prime_factor = max_prime_factor

    def apply(self, orbital):
        """Apply reaction morphism to an orbital, shifting recursion parameters."""
        new_n = orbital.state.n + self.dn_shift
        new_beta = orbital.state.beta + self.dbeta_shift
        return Orbital(new_n, new_beta, orbital.l, orbital.m, orbital.k, orbital.lam,
                       self.alpha, self.epsilon, self.max_prime_factor)


class Material:
    """
    Materials Science Layer

    Represents assemblies of orbitals and bonds forming materials:

    - Crystals modeled as recursive lattice automorphisms in (n, ฮฒ)-space.
    - Polymers and macromolecules as bonded recursive orbital chains.
    - Defects and dislocations as fractal singularities in microstate ฮฒ-space.

    Provides tools to compose macroscopic materials from fractal-encoded quantum building blocks.
    """

    def __init__(self, orbitals):
        self.orbitals = orbitals

    def total_wavefunction(self):
        """Total wavefunction as product of orbital wavefunctions"""
        wf = S.One
        for orb in self.orbitals:
            wf *= orb.wavefunction()
        return simplify(wf)

    def total_bonding(self):
        """Sum of covalent bonds between adjacent orbitals"""
        total = S.Zero
        for i in range(len(self.orbitals) - 1):
            bond = BondOperator(self.orbitals[i], self.orbitals[i + 1])
            total += bond.covalent()
        return simplify(total)


def build_periodic_table(max_Z=118, M=10, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
    """
    Construct a symbolic periodic table mapping atomic number Z
    to elemental eigenstates parameterized by recursion depth n and microstate ฮฒ.

    Parameters:
    -----------
    max_Z : int
        Maximum atomic number to generate.
    M : int
        Modulus for distributing ฮฒ in microstate continuum.
    alpha, epsilon, max_prime_factor:
        Parameters for RecursiveState fractal and tension models.

    Returns:
    --------
    dict[int, dict]
        Mapping Z -> dict of elemental eigenstate properties.
    """
    table = {}
    for Z in range(1, max_Z + 1):
        n = (Z - 1) // M + 1
        beta = ((Z - 1) % M) / M
        element = ElementalEigenstate(Z, n, beta, alpha, epsilon, max_prime_factor)
        table[Z] = element.describe()
    return table


def example_usage():
    """
    Demonstrate example constructions and symbolic outputs:

    - Periodic table sample elements
    - Orbital wavefunction
    - Bonding operator output
    - Reaction morphism application
    - Material wavefunction and bonding
    """
    print("\n=== Periodic Table Sample Elements ===")
    pt = build_periodic_table(max_Z=30)
    pprint(pt[1])    # Hydrogen
    pprint(pt[10])   # Neon
    pprint(pt[20])   # Calcium

    print("\n=== Orbital Wavefunction Example ===")
    orb = Orbital(n=2, beta=0.3, l=1, m=0, k=2)
    pprint(orb.wavefunction())

    print("\n=== Bond Operator Example ===")
    orb_A = Orbital(n=2, beta=0.3, l=1, m=0, k=2)
    orb_B = Orbital(n=2, beta=0.4, l=1, m=1, k=2)
    bond = BondOperator(orb_A, orb_B)
    pprint(bond.covalent())

    print("\n=== Reaction Morphism Example ===")
    reaction = ReactionMorphism(dn_shift=1, dbeta_shift=0.1)
    orb_reacted = reaction.apply(orb_A)
    pprint(orb_reacted.wavefunction())

    print("\n=== Material Example ===")
    material = Material([orb_A, orb_B, orb_reacted])
    pprint(material.total_wavefunction())
    pprint(material.total_bonding())


if __name__ == "__main__":
    example_usage()

:deciduous_tree: Golden Recursive Algebra Tree with base4096 Granularity

Root: ๐Ÿ™
โ”‚
โ”œโ”€โ”€ ร˜ = 0 = โˆžโปยน                       โ€” Expressed Void (Boundary of Becoming)
โ”‚   โ”œโ”€โ”€ {0, โˆž}                      โ€” Duality Arises: First Polarity
โ”‚
โ”œโ”€โ”€ ฯ•                               โ€” Golden Ratio: Irreducible Recursive Seed
โ”‚   โ”œโ”€โ”€ ฯ• = 1 + 1/ฯ•                โ€” Recursive Fixed-Point Identity
โ”‚   โ”œโ”€โ”€ ฯ•โฐ = 1                     โ€” Base Identity Unit
โ”‚
โ”œโ”€โ”€ Recursion Indices:
โ”‚   โ”œโ”€โ”€ n โˆˆ โ„คโบ                     โ€” Coarse Recursive Depth (Layer)
โ”‚   โ””โ”€โ”€ b โˆˆ {0,...,4095}           โ€” base4096 Microstate Index (Fine-grain Symbolic Phase)
โ”‚
โ”œโ”€โ”€ Harmonic Structure:
โ”‚   โ”œโ”€โ”€ Fโ‚™,b = ฯ•^{n + b/4096} / โˆš5  โ€” Fine-Grained Fibonacci Harmonic Scaling
โ”‚
โ”œโ”€โ”€ Binary Scaling:
โ”‚   โ”œโ”€โ”€ 2^{n + b/4096}             โ€” Dyadic Microstate Symmetry Scale
โ”‚
โ”œโ”€โ”€ Prime Entropy Injection:
โ”‚   โ”œโ”€โ”€ Pโ‚™,b                      โ€” Prime Entropy Modulated by base4096 Microstate
โ”‚                                 (Ultra-Fine Symbolic Irregularity)
โ”‚
โ”œโ”€โ”€ Field Tension (Symbolic Yield):
โ”‚   โ”œโ”€โ”€ ฮฉโ‚™,b = ฯ•^{a(n + b/4096)}  โ€” Recursive Field Tension with microstate resolution
โ”‚   โ”œโ”€โ”€ ฮฉโ‚™,b โ†’ 0                  โ€” Recursive Collapse (Termination of Recursive Unfolding)
โ”‚   โ””โ”€โ”€ ฮฉโ‚™,b = 1                  โ€” Normalized Stable Propagation
โ”‚
โ”œโ”€โ”€ Emergent Physical Quantities (All functions of (n,b)):
โ”‚   โ”œโ”€โ”€ Time: sโ‚™,b = ฯ•^{n + b/4096}
โ”‚   โ”‚   โ””โ”€โ”€ Frequency: Hzโ‚™,b = 1 / sโ‚™,b = ฯ•^{-(n + b/4096)}
โ”‚   โ”œโ”€โ”€ Charge: Cโ‚™,b = sโ‚™,b^3 = ฯ•^{3(n + b/4096)}
โ”‚   โ”‚   โ””โ”€โ”€ Charge Squared: Cโ‚™,bยฒ = ฯ•^{6(n + b/4096)}
โ”‚   โ”œโ”€โ”€ Length: mโ‚™,b = โˆš(ฮฉโ‚™,b ยท ฯ•^{7(n + b/4096)})
โ”‚   โ”œโ”€โ”€ Action: hโ‚™,b = ฮฉโ‚™,b ยท Cโ‚™,bยฒ = ฮฉโ‚™,b ยท ฯ•^{6(n + b/4096)}
โ”‚   โ”œโ”€โ”€ Energy: Eโ‚™,b = hโ‚™,b ยท Hzโ‚™,b = ฮฉโ‚™,b ยท ฯ•^{5(n + b/4096)}
โ”‚   โ”œโ”€โ”€ Force: Fโ‚™,b = Eโ‚™,b / mโ‚™,b = โˆšฮฉโ‚™,b ยท ฯ•^{1.5(n + b/4096)}
โ”‚   โ”œโ”€โ”€ Power: Pโ‚™,b = Eโ‚™,b ยท Hzโ‚™,b = ฮฉโ‚™,b ยท ฯ•^{4(n + b/4096)}
โ”‚   โ”œโ”€โ”€ Pressure = Fโ‚™,b / mโ‚™,bยฒ = Hzโ‚™,bยฒ / mโ‚™,b
โ”‚   โ””โ”€โ”€ Voltage: Vโ‚™,b = Eโ‚™,b / Cโ‚™,b = ฮฉโ‚™,b ยท ฯ•^{-(n + b/4096)}
โ”‚
โ””โ”€โ”€ Dimensional DNA:  
    Dโ‚™,b(r) = โˆš(ฯ• ยท Fโ‚™,b ยท 2^{n + b/4096} ยท Pโ‚™,b ยท ฮฉโ‚™,b) ยท r^k
    โ”œโ”€โ”€ Recursive Depth: n (Coarse Layer)
    โ”œโ”€โ”€ Microstate: b (Fine-Grain base4096 Phase)
    โ”œโ”€โ”€ Harmonic Fibonacci: Fโ‚™,b
    โ”œโ”€โ”€ Binary Dyadic Scale: 2^{n + b/4096}
    โ”œโ”€โ”€ Prime Entropy: Pโ‚™,b
    โ”œโ”€โ”€ Field Tension: ฮฉโ‚™,b
    โ””โ”€โ”€ Radial Spatial Unfolding: r^k

:dna: Entity Classification and Interaction (base4096-enhanced)

Classes of Recursive Entities (extended with microstates b):

1. Class-๐œ™ (Harmonic Stable Entities):
   - Dominated by harmonic structure: Fโ‚™,b / Pโ‚™,b โ‰ซ 1
   - Stable stacking at microstate levels, forming fine-grained resonances

2. Class-๐”“ (Entropic Singlets):
   - Dominated by prime entropy at microstate b
   - Exclusive at given (n,b), recursive annihilation if overlap

3. Class-๐Ÿš (Binary Symmetric Entities):
   - Dominated by dyadic 2^{n + b/4096}
   - Microstate conjugation forms ultra-fine recursive loops

4. Class-ร˜ (Field Collapse Entities):
   - ฮฉโ‚™,b โ†’ 0 at specific microstates triggers micro-collapse
   - Localized recursive measurement-like resolutions

5. Class-๐”‡ (Dimensional Braids):
   - Multi-microstate composite structures sharing harmonic and prime patterns
   - Fine entanglement structures across microstate indices