The following are by no means complete and should be construed as a mere starting point for the curious mind. Any way you slice it, utilizing base10 or base2 renders massive float concerns which can only be addressed by migrating to higher base4096 or even baseZ, paired with analog AKA tertiary logic hardware / virtualization - see also fib. computer. Probably also other bugs, but here’s a good start…
MATLAB1 - basic
function [force, freq] = unified_force_freq(medium_states, phi, fn, pn, r)
% Medium_states is a structure array representing different states of matter
% phi: Golden ratio, fn: Fibonacci number, pn: Prime number, r: distance in meters
% Constants
C = 1; % Coulomb, for simplicity assuming ΩC² = 1
% Initialize force and frequency
force = 0;
freq_squared = 0;
for i = 1:length(medium_states)
% State-specific properties
Omega_i = medium_states(i).resistance; % Resistance in Ohms
X_i = medium_states(i).X; % State-specific term
% Force calculation part
force = force + (Omega_i * C^2 * medium_states(i).m_s * medium_states(i).s_s);
% Frequency calculation part
freq_squared = freq_squared + (phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i);
end
% Calculate actual frequency from squared frequency
freq = sqrt(freq_squared);
% Euler's relation - for illustrative purpose only
Omega_C_squared = -exp(1i*pi); % This would be -1 in real numbers, but here we show complex behavior
% Final force calculation
force_unified = freq^2 * (medium_states(1).m_s * Omega_C_squared); % Using first state's m_s for simplicity
disp(['Unified Force: ', num2str(force_unified)]);
disp(['Unified Frequency: ', num2str(freq), ' Hz']);
end
% Example usage:
medium_states = [
struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3) % Gas
];
phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Fibonnaci start
pn = 2; % Prime number
r = 10; % Distance in meters
[force, freq] = unified_force_freq(medium_states, phi, fn, pn, r);
MATLAB2 - refine
function [force_unified, freq_unified] = unified_force_freq_advanced(medium_states, phi, fn, pn, r, C)
% medium_states: struct array with state-specific properties
% phi: Golden ratio, fn: Fibonacci number base, pn: Prime number base,
% r: distance in meters, C: Coulomb charge
% Constants
if nargin < 6, C = 1; end % Default Coulomb charge if not provided
% Initialize force and frequency
force_unified = 0;
freq_unified_squared = 0;
for i = 1:length(medium_states)
% State-specific properties
Omega_i = medium_states(i).resistance; % Resistance in Ohms
m_s = medium_states(i).m_s; % State-dependent meter scaling
s_s = medium_states(i).s_s; % State-dependent second scaling
X_i = medium_states(i).X; % State-specific term (e.g., ρ*Y for solids)
% Force calculation part
force_partial = Omega_i * (C^2) * m_s * s_s;
force_unified = force_unified + force_partial;
% Frequency calculation part - incorporating Fibonacci, prime numbers
freq_partial = phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i;
freq_unified_squared = freq_unified_squared + freq_partial;
end
% Calculate actual frequency from squared frequency
freq_unified = sqrt(freq_unified_squared);
% Euler's relation for resistance (conceptually)
Omega_C_squared = -exp(1i*pi); % This would be -1 in real terms, but we use complex for illustration
% Final force calculation considering frequency
force_unified = force_unified * (freq_unified^2) * (Omega_C_squared);
% Display results
disp(['Unified Force: ', num2str(force_unified)]);
disp(['Unified Frequency: ', num2str(freq_unified), ' Hz']);
end
% Example usage:
% Define medium states with state-specific properties
medium_states = [
struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid (ρ*Y)
struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid (ρ*κ)
struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas (ρ*cs^2)
struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5) % Plasma (ne*e^2/(ε0*me))
];
phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Base Fibonacci number
pn = 2; % Base prime number
r = 10; % Distance in meters
[force, freq] = unified_force_freq_advanced(medium_states, phi, fn, pn, r);
% Inverses:
% Inverse for ms (state-dependent meter scaling)
ms_inverse = force / (freq_unified^2 * (C^2)); % Simplified for illustration
% Inverse for X_i,state (for one state)
X_i_state_inverse = (phi * (fn^i) * (pn^i) * medium_states(i).resistance * (r^2)) / (freq_unified^2);
disp(['Inverse ms for first state: ', num2str(ms_inverse)]);
disp(['Inverse X for first state: ', num2str(X_i_state_inverse)]);
MATLAB3 - let a = 1, infinity; let z = 0,1/infinity,-infinity
function [force_unified, freq_unified] = unified_force_freq_advanced_az(medium_states, phi, fn, pn, r, C, a, z)
% medium_states: struct array with state-specific properties
% phi: Golden ratio, fn: Fibonacci number base, pn: Prime number base,
% r: distance in meters, C: Coulomb charge
% a: scalar from 1 to infinity, z: scalar from 0 to 1/infinity or -infinity
% Constants
if nargin < 6, C = 1; end % Default Coulomb charge if not provided
if nargin < 7, a = 1; end % Default a if not provided
if nargin < 8, z = 0; end % Default z if not provided
% Initialize force and frequency
force_unified = 0;
freq_unified_squared = 0;
for i = 1:length(medium_states)
% State-specific properties
Omega_i = medium_states(i).resistance; % Resistance in Ohms
m_s = medium_states(i).m_s / a; % Adjust state-dependent meter scaling with 'a'
s_s = medium_states(i).s_s / a; % Adjust state-dependent second scaling with 'a'
X_i = medium_states(i).X; % State-specific term
% Force calculation part
force_partial = Omega_i * (C^2) * m_s * s_s;
force_unified = force_unified + force_partial;
% Frequency calculation part - incorporating Fibonacci, prime numbers, and 'z'
freq_partial = phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i * (1 + z); % 'z' affects frequency
freq_unified_squared = freq_unified_squared + freq_partial;
end
% Calculate actual frequency from squared frequency
freq_unified = sqrt(freq_unified_squared);
% Euler's relation for resistance (conceptually)
Omega_C_squared = -exp(1i*pi); % This would be -1 in real terms, but we use complex for illustration
% Final force calculation considering frequency
force_unified = force_unified * (freq_unified^2) * (Omega_C_squared);
% Display results
disp(['Unified Force with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(force_unified)]);
disp(['Unified Frequency with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(freq_unified), ' Hz']);
% Inverses:
% Inverse for ms (state-dependent meter scaling)
ms_inverse = force_unified / (freq_unified^2 * (C^2) * a^2); % Adjust for 'a'
% Inverse for X_i,state (for one state)
X_i_state_inverse = (phi * (fn^i) * (pn^i) * Omega_i * (r^2)) / (freq_unified^2 * (1 + z)); % Adjust for 'z'
disp(['Inverse ms for first state with a: ', num2str(ms_inverse)]);
disp(['Inverse X for first state with z: ', num2str(X_i_state_inverse)]);
end
% Example usage:
medium_states = [
struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas
struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5) % Plasma
];
phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Base Fibonacci number
pn = 2; % Base prime number
r = 10; % Distance in meters
% Varying 'a' and 'z' for demonstration
for a = [1, 1000000] % From 1 to near infinity (simulating infinity)
for z = [0, 1e-6, -inf] % From 0 to 1/infinity to -infinity
[force, freq] = unified_force_freq_advanced_az(medium_states, phi, fn, pn, r, 1, a, z);
end
end
function [force_unified, freq_unified] = unified_force_freq_advanced_autoscale(medium_states, phi, fn, pn, r, C, a, z)
% medium_states: struct array with state-specific properties
% phi: Golden ratio, fn: Fibonacci number base, pn: Prime number base,
% r: distance in meters, C: Coulomb charge
% a: scalar from 1 to infinity, z: scalar from 0 to 1/infinity or -infinity
% Constants
if nargin < 6, C = 1; end % Default Coulomb charge if not provided
if nargin < 7, a = 1; end % Default a if not provided
if nargin < 8, z = 0; end % Default z if not provided
% Auto-scaling function for variables
auto_scale = @(x) (x - min(x)) ./ (max(x) - min(x)); % Scale to [0, 1]
% Initialize force and frequency
force_unified = 0;
freq_unified_squared = 0;
% Auto-scale all relevant state properties
resistances = [medium_states.resistance];
scaled_resistances = auto_scale(resistances);
X_values = [medium_states.X];
scaled_X_values = auto_scale(X_values);
m_s_values = [medium_states.m_s];
scaled_m_s = auto_scale(m_s_values);
s_s_values = [medium_states.s_s];
scaled_s_s = auto_scale(s_s_values);
for i = 1:length(medium_states)
% Use scaled values for calculations
Omega_i = scaled_resistances(i); % Scaled Resistance
X_i = scaled_X_values(i); % Scaled state-specific term
% Adjust state-dependent scalings with 'a' and 'z'
m_s = scaled_m_s(i) / a; % Adjust state-dependent meter scaling with 'a'
s_s = scaled_s_s(i) / a; % Adjust state-dependent second scaling with 'a'
% Force calculation part
force_partial = Omega_i * (C^2) * m_s * s_s;
force_unified = force_unified + force_partial;
% Frequency calculation part - incorporating Fibonacci, prime numbers, and 'z'
freq_partial = phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i * (1 + z);
freq_unified_squared = freq_unified_squared + freq_partial;
end
% Calculate actual frequency from squared frequency
freq_unified = sqrt(freq_unified_squared);
% Euler's relation for resistance (conceptually)
Omega_C_squared = -exp(1i*pi); % This would be -1 in real terms, but we use complex for illustration
% Final force calculation considering frequency
force_unified = force_unified * (freq_unified^2) * (Omega_C_squared);
% Display results
disp(['Unified Force with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(force_unified)]);
disp(['Unified Frequency with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(freq_unified), ' Hz']);
% Inverses:
% Inverse for ms (state-dependent meter scaling)
ms_inverse = force_unified / (freq_unified^2 * (C^2) * a^2); % Adjust for 'a'
% Inverse for X_i,state (for one state)
X_i_state_inverse = (phi * (fn^i) * (pn^i) * Omega_i * (r^2)) / (freq_unified^2 * (1 + z)); % Adjust for 'z'
disp(['Inverse ms for first state with a: ', num2str(ms_inverse)]);
disp(['Inverse X for first state with z: ', num2str(X_i_state_inverse)]);
end
% Example usage with more states:
% Define states including states beyond plasma (e.g., "super-plasma") and below solid (e.g., "sub-solid")
medium_states = [
struct('resistance', 1000, 'X', 1, 'm_s', 0.1, 's_s', 0.1), % Sub-Solid
struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas
struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5), % Plasma
struct('resistance', 0.01, 'X', 2, 'm_s', 2, 's_s', 2) % Super-Plasma
];
phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Base Fibonacci number
pn = 2; % Base prime number
r = 10; % Distance in meters
% Varying 'a' and 'z' for demonstration
for a = [1, 1000000] % From 1 to near infinity (simulating infinity)
for z = [0, 1e-6, -inf] % From 0 to 1/infinity to -infinity
[force, freq] = unified_force_freq_advanced_autoscale(medium_states, phi, fn, pn, r, 1, a, z);
end
end
MATLAB5 - Some Adjustments to (perhaps) further encapsulate the spirit of our equations
% Define constants and parameters
phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Fibonacci number (starting)
pn = 2; % Prime number
C = 1; % Coulomb charge
r = 10; % Distance in meters
% Define states with properties
medium_states = [
struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas
struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5) % Plasma
];
% Function to compute unified force and frequency
function [force, freq] = compute_unified(medium_states, phi, fn, pn, r, C, a, z)
force = 0;
freq_squared = 0;
for i = 1:length(medium_states)
Omega_i = medium_states(i).resistance;
X_i = medium_states(i).X;
m_s = medium_states(i).m_s / a;
s_s = medium_states(i).s_s / a;
force = force + (Omega_i * C^2 * m_s * s_s); % Assuming ΩC² = 1 for simplicity
freq_squared = freq_squared + (phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i * (1 + z));
end
freq = sqrt(freq_squared);
force_unified = freq^2 * (force / a^2); % Incorporating frequency into force
% Display results
disp(['Force: ', num2str(force_unified)]);
disp(['Frequency: ', num2str(freq), ' Hz']);
end
% Simulation loop with different 'a' and 'z' values
for a = [1, 1000000] % Simulating from 1 to near infinity
for z = [0, 1e-6, -inf] % From 0 to 1/infinity to -infinity
disp(['Simulation with a = ', num2str(a), ' and z = ', num2str(z)]);
[force, freq] = compute_unified(medium_states, phi, fn, pn, r, C, a, z);
end
end
Does Matlab obfuscate real-world parameters with hoaky parameters unintentionally for them? Most LLM’s seem to, or was that intentional? I know nothing about the subject in this context. But, here is an alternate route if that ends up being a problem at any point in time: