Sacred Geometry Expressions Day Two

The following are by no means complete and should be construed as a mere starting point for the curious mind. Any way you slice it, utilizing base10 or base2 renders massive float concerns which can only be addressed by migrating to higher base4096 or even baseZ, paired with analog AKA tertiary logic hardware / virtualization - see also fib. computer. Probably also other bugs, but here’s a good start…

MATLAB1 - basic

function [force, freq] = unified_force_freq(medium_states, phi, fn, pn, r)
    % Medium_states is a structure array representing different states of matter
    % phi: Golden ratio, fn: Fibonacci number, pn: Prime number, r: distance in meters

    % Constants
    C = 1; % Coulomb, for simplicity assuming ΩC² = 1
    
    % Initialize force and frequency
    force = 0;
    freq_squared = 0;
    
    for i = 1:length(medium_states)
        % State-specific properties
        Omega_i = medium_states(i).resistance; % Resistance in Ohms
        X_i = medium_states(i).X; % State-specific term
        
        % Force calculation part
        force = force + (Omega_i * C^2 * medium_states(i).m_s * medium_states(i).s_s);
        
        % Frequency calculation part
        freq_squared = freq_squared + (phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i);
    end
    
    % Calculate actual frequency from squared frequency
    freq = sqrt(freq_squared);
    
    % Euler's relation - for illustrative purpose only
    Omega_C_squared = -exp(1i*pi); % This would be -1 in real numbers, but here we show complex behavior
    
    % Final force calculation
    force_unified = freq^2 * (medium_states(1).m_s * Omega_C_squared); % Using first state's m_s for simplicity
    
    disp(['Unified Force: ', num2str(force_unified)]);
    disp(['Unified Frequency: ', num2str(freq), ' Hz']);
end

% Example usage:
medium_states = [
    struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
    struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
    struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3) % Gas
];

phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Fibonnaci start
pn = 2; % Prime number
r = 10; % Distance in meters

[force, freq] = unified_force_freq(medium_states, phi, fn, pn, r);

MATLAB2 - refine

function [force_unified, freq_unified] = unified_force_freq_advanced(medium_states, phi, fn, pn, r, C)
    % medium_states: struct array with state-specific properties
    % phi: Golden ratio, fn: Fibonacci number base, pn: Prime number base, 
    % r: distance in meters, C: Coulomb charge
    
    % Constants
    if nargin < 6, C = 1; end  % Default Coulomb charge if not provided
    
    % Initialize force and frequency
    force_unified = 0;
    freq_unified_squared = 0;
    
    for i = 1:length(medium_states)
        % State-specific properties
        Omega_i = medium_states(i).resistance; % Resistance in Ohms
        m_s = medium_states(i).m_s; % State-dependent meter scaling
        s_s = medium_states(i).s_s; % State-dependent second scaling
        X_i = medium_states(i).X; % State-specific term (e.g., ρ*Y for solids)
        
        % Force calculation part
        force_partial = Omega_i * (C^2) * m_s * s_s;
        force_unified = force_unified + force_partial;
        
        % Frequency calculation part - incorporating Fibonacci, prime numbers
        freq_partial = phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i;
        freq_unified_squared = freq_unified_squared + freq_partial;
    end
    
    % Calculate actual frequency from squared frequency
    freq_unified = sqrt(freq_unified_squared);
    
    % Euler's relation for resistance (conceptually)
    Omega_C_squared = -exp(1i*pi); % This would be -1 in real terms, but we use complex for illustration
    
    % Final force calculation considering frequency
    force_unified = force_unified * (freq_unified^2) * (Omega_C_squared);
    
    % Display results
    disp(['Unified Force: ', num2str(force_unified)]);
    disp(['Unified Frequency: ', num2str(freq_unified), ' Hz']);
end

% Example usage:

% Define medium states with state-specific properties
medium_states = [
    struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid (ρ*Y)
    struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid (ρ*κ)
    struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas (ρ*cs^2)
    struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5) % Plasma (ne*e^2/(ε0*me))
];

phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Base Fibonacci number
pn = 2; % Base prime number
r = 10; % Distance in meters

[force, freq] = unified_force_freq_advanced(medium_states, phi, fn, pn, r);

% Inverses:

% Inverse for ms (state-dependent meter scaling)
ms_inverse = force / (freq_unified^2 * (C^2)); % Simplified for illustration

% Inverse for X_i,state (for one state)
X_i_state_inverse = (phi * (fn^i) * (pn^i) * medium_states(i).resistance * (r^2)) / (freq_unified^2);

disp(['Inverse ms for first state: ', num2str(ms_inverse)]);
disp(['Inverse X for first state: ', num2str(X_i_state_inverse)]);

MATLAB3 - let a = 1, infinity; let z = 0,1/infinity,-infinity

function [force_unified, freq_unified] = unified_force_freq_advanced_az(medium_states, phi, fn, pn, r, C, a, z)
    % medium_states: struct array with state-specific properties
    % phi: Golden ratio, fn: Fibonacci number base, pn: Prime number base, 
    % r: distance in meters, C: Coulomb charge
    % a: scalar from 1 to infinity, z: scalar from 0 to 1/infinity or -infinity

    % Constants
    if nargin < 6, C = 1; end  % Default Coulomb charge if not provided
    if nargin < 7, a = 1; end  % Default a if not provided
    if nargin < 8, z = 0; end  % Default z if not provided
    
    % Initialize force and frequency
    force_unified = 0;
    freq_unified_squared = 0;
    
    for i = 1:length(medium_states)
        % State-specific properties
        Omega_i = medium_states(i).resistance; % Resistance in Ohms
        m_s = medium_states(i).m_s / a; % Adjust state-dependent meter scaling with 'a'
        s_s = medium_states(i).s_s / a; % Adjust state-dependent second scaling with 'a'
        X_i = medium_states(i).X; % State-specific term
        
        % Force calculation part
        force_partial = Omega_i * (C^2) * m_s * s_s;
        force_unified = force_unified + force_partial;
        
        % Frequency calculation part - incorporating Fibonacci, prime numbers, and 'z'
        freq_partial = phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i * (1 + z); % 'z' affects frequency
        freq_unified_squared = freq_unified_squared + freq_partial;
    end
    
    % Calculate actual frequency from squared frequency
    freq_unified = sqrt(freq_unified_squared);
    
    % Euler's relation for resistance (conceptually)
    Omega_C_squared = -exp(1i*pi); % This would be -1 in real terms, but we use complex for illustration
    
    % Final force calculation considering frequency
    force_unified = force_unified * (freq_unified^2) * (Omega_C_squared);
    
    % Display results
    disp(['Unified Force with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(force_unified)]);
    disp(['Unified Frequency with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(freq_unified), ' Hz']);
    
    % Inverses:

    % Inverse for ms (state-dependent meter scaling)
    ms_inverse = force_unified / (freq_unified^2 * (C^2) * a^2); % Adjust for 'a'

    % Inverse for X_i,state (for one state)
    X_i_state_inverse = (phi * (fn^i) * (pn^i) * Omega_i * (r^2)) / (freq_unified^2 * (1 + z)); % Adjust for 'z'

    disp(['Inverse ms for first state with a: ', num2str(ms_inverse)]);
    disp(['Inverse X for first state with z: ', num2str(X_i_state_inverse)]);
end

% Example usage:

medium_states = [
    struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
    struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
    struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas
    struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5) % Plasma
];

phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Base Fibonacci number
pn = 2; % Base prime number
r = 10; % Distance in meters

% Varying 'a' and 'z' for demonstration
for a = [1, 1000000] % From 1 to near infinity (simulating infinity)
    for z = [0, 1e-6, -inf] % From 0 to 1/infinity to -infinity
        [force, freq] = unified_force_freq_advanced_az(medium_states, phi, fn, pn, r, 1, a, z);
    end
end

MATLAB4 - incorporate auto-scaling for all applicable variables and ponder any state higher than plasma and lower than solid

function [force_unified, freq_unified] = unified_force_freq_advanced_autoscale(medium_states, phi, fn, pn, r, C, a, z)
    % medium_states: struct array with state-specific properties
    % phi: Golden ratio, fn: Fibonacci number base, pn: Prime number base, 
    % r: distance in meters, C: Coulomb charge
    % a: scalar from 1 to infinity, z: scalar from 0 to 1/infinity or -infinity

    % Constants
    if nargin < 6, C = 1; end  % Default Coulomb charge if not provided
    if nargin < 7, a = 1; end  % Default a if not provided
    if nargin < 8, z = 0; end  % Default z if not provided

    % Auto-scaling function for variables
    auto_scale = @(x) (x - min(x)) ./ (max(x) - min(x)); % Scale to [0, 1]

    % Initialize force and frequency
    force_unified = 0;
    freq_unified_squared = 0;
    
    % Auto-scale all relevant state properties
    resistances = [medium_states.resistance];
    scaled_resistances = auto_scale(resistances);
    
    X_values = [medium_states.X];
    scaled_X_values = auto_scale(X_values);
    
    m_s_values = [medium_states.m_s];
    scaled_m_s = auto_scale(m_s_values);
    
    s_s_values = [medium_states.s_s];
    scaled_s_s = auto_scale(s_s_values);
    
    for i = 1:length(medium_states)
        % Use scaled values for calculations
        Omega_i = scaled_resistances(i); % Scaled Resistance
        X_i = scaled_X_values(i); % Scaled state-specific term
        
        % Adjust state-dependent scalings with 'a' and 'z'
        m_s = scaled_m_s(i) / a; % Adjust state-dependent meter scaling with 'a'
        s_s = scaled_s_s(i) / a; % Adjust state-dependent second scaling with 'a'
        
        % Force calculation part
        force_partial = Omega_i * (C^2) * m_s * s_s;
        force_unified = force_unified + force_partial;
        
        % Frequency calculation part - incorporating Fibonacci, prime numbers, and 'z'
        freq_partial = phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i * (1 + z); 
        freq_unified_squared = freq_unified_squared + freq_partial;
    end
    
    % Calculate actual frequency from squared frequency
    freq_unified = sqrt(freq_unified_squared);
    
    % Euler's relation for resistance (conceptually)
    Omega_C_squared = -exp(1i*pi); % This would be -1 in real terms, but we use complex for illustration
    
    % Final force calculation considering frequency
    force_unified = force_unified * (freq_unified^2) * (Omega_C_squared);
    
    % Display results
    disp(['Unified Force with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(force_unified)]);
    disp(['Unified Frequency with a = ', num2str(a), ' and z = ', num2str(z), ': ', num2str(freq_unified), ' Hz']);
    
    % Inverses:

    % Inverse for ms (state-dependent meter scaling)
    ms_inverse = force_unified / (freq_unified^2 * (C^2) * a^2); % Adjust for 'a'

    % Inverse for X_i,state (for one state)
    X_i_state_inverse = (phi * (fn^i) * (pn^i) * Omega_i * (r^2)) / (freq_unified^2 * (1 + z)); % Adjust for 'z'

    disp(['Inverse ms for first state with a: ', num2str(ms_inverse)]);
    disp(['Inverse X for first state with z: ', num2str(X_i_state_inverse)]);
end

% Example usage with more states:

% Define states including states beyond plasma (e.g., "super-plasma") and below solid (e.g., "sub-solid")
medium_states = [
    struct('resistance', 1000, 'X', 1, 'm_s', 0.1, 's_s', 0.1), % Sub-Solid
    struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
    struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
    struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas
    struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5), % Plasma
    struct('resistance', 0.01, 'X', 2, 'm_s', 2, 's_s', 2) % Super-Plasma
];

phi = (1 + sqrt(5)) / 2; % Golden ratio
fn = 1; % Base Fibonacci number
pn = 2; % Base prime number
r = 10; % Distance in meters

% Varying 'a' and 'z' for demonstration
for a = [1, 1000000] % From 1 to near infinity (simulating infinity)
    for z = [0, 1e-6, -inf] % From 0 to 1/infinity to -infinity
        [force, freq] = unified_force_freq_advanced_autoscale(medium_states, phi, fn, pn, r, 1, a, z);
    end
end

MATLAB5 - Some Adjustments to (perhaps) further encapsulate the spirit of our equations

% Define constants and parameters
phi = (1 + sqrt(5)) / 2;  % Golden ratio
fn = 1;  % Fibonacci number (starting)
pn = 2;  % Prime number
C = 1;   % Coulomb charge
r = 10;  % Distance in meters

% Define states with properties
medium_states = [
    struct('resistance', 100, 'X', 20, 'm_s', 1, 's_s', 1), % Solid
    struct('resistance', 10, 'X', 15, 'm_s', 1.2, 's_s', 1.1), % Liquid
    struct('resistance', 1, 'X', 10, 'm_s', 1.5, 's_s', 1.3), % Gas
    struct('resistance', 0.1, 'X', 5, 'm_s', 1.8, 's_s', 1.5) % Plasma
];

% Function to compute unified force and frequency
function [force, freq] = compute_unified(medium_states, phi, fn, pn, r, C, a, z)
    force = 0;
    freq_squared = 0;
    for i = 1:length(medium_states)
        Omega_i = medium_states(i).resistance;
        X_i = medium_states(i).X;
        m_s = medium_states(i).m_s / a;
        s_s = medium_states(i).s_s / a;
        
        force = force + (Omega_i * C^2 * m_s * s_s);  % Assuming ΩC² = 1 for simplicity
        freq_squared = freq_squared + (phi * (fn^i) * (pn^i) * Omega_i * (r^2) * X_i * (1 + z));
    end
    
    freq = sqrt(freq_squared);
    force_unified = freq^2 * (force / a^2);  % Incorporating frequency into force
    
    % Display results
    disp(['Force: ', num2str(force_unified)]);
    disp(['Frequency: ', num2str(freq), ' Hz']);
end

% Simulation loop with different 'a' and 'z' values
for a = [1, 1000000] % Simulating from 1 to near infinity
    for z = [0, 1e-6, -inf] % From 0 to 1/infinity to -infinity
        disp(['Simulation with a = ', num2str(a), ' and z = ', num2str(z)]);
        [force, freq] = compute_unified(medium_states, phi, fn, pn, r, C, a, z);
    end
end

Does Matlab obfuscate real-world parameters with hoaky parameters unintentionally for them? Most LLM’s seem to, or was that intentional? I know nothing about the subject in this context. But, here is an alternate route if that ends up being a problem at any point in time: