Big G is EMERGENT (Gravity)

supernova8.py


Assumptions:
  - s = seconds
  - m = meters
  - M = mass
  - C = k · M
  - m = r
  - τG = Ω (situationally)

Force Law:
  F = (Ω · C²) / (m · s)

Substitute:
  F = (Ω · k² · M²) / (r · s)

Emergent G:
  G = (Ω · k² · r) / s

Therefore:
  F = G · M² / r²

G is proportional to r/s



So gravity’s strength depends on distance and time scale, consistent with a dynamic, field-based universe where coupling constants emerge from deeper structure.

from sympy import symbols, Eq, solve, simplify

# Define symbols
Omega, k, M, r, s, G, F = symbols('Omega k M r s G F')

# Define charge as proportional to mass
C = k * M

# Define force law
F1 = (Omega * C**2) / (r * s)  # From: F = (Ω · C²) / (r · s)

# Define emergent gravitational constant
G_expr = (Omega * k**2 * r) / s

# Define Newtonian form: F = G·M² / r²
F2 = (G_expr * M**2) / r**2

# Simplify and compare
difference = simplify(F1 - F2)

print("Force from field tension model:\nF1 =", F1)
print("\nForce from Newtonian with emergent G:\nF2 =", F2)
print("\nSimplified difference (should be 0):\n", difference)

OUTPUT:

Force from field tension model:
F1 = Omega*k**2*M**2/(r*s)

Force from Newtonian with emergent G:
F2 = Omega*k**2*M**2/(r*s)

Simplified difference (should be 0):
0

from sympy import symbols, Eq, simplify, Function

# ------------------------------------------
# Define Fundamental Symbols
# ------------------------------------------
# Units:
#   s = time (seconds)
#   r = radial distance (meters)
#   M = mass
#   Ω = field tension (Ohmic tension, e.g., N·s/m)
#   k = proportionality constant between mass and charge
#   C = charge (emergent from mass)
#   G = emergent gravitational coupling
#   F = force

# ------------------------------------------
# Declare symbolic variables
# ------------------------------------------
M, r, s = symbols('M r s', real=True, positive=True)       # mass, radius, seconds
k, Omega = symbols('k Omega', real=True, positive=True)    # constants
G = symbols('G', real=True)                                # gravitational coupling
F = symbols('F', real=True)                                # force

# ------------------------------------------
# Define Core Relationships
# ------------------------------------------

# Assumption 1: Charge is proportional to mass
C = k * M   # C ≡ k · M

# Assumption 2: Gravitational field tension is Ohmic-like
# τ_G = Ω

# Step 1: Generalized force law using field tension
F_from_tension = (Omega * C**2) / (r * s)   # F = (Ω · C²) / (r · s)

# Step 2: Define emergent gravitational constant
G_emergent = (Omega * k**2 * r) / s         # G = (Ω · k² · r) / s

# Step 3: Newtonian form using emergent G
F_newtonian = (G_emergent * M**2) / r**2    # F = G · M² / r²

# ------------------------------------------
# Validate Equivalence
# ------------------------------------------
difference = simplify(F_from_tension - F_newtonian)

# ------------------------------------------
# Output and Verification
# ------------------------------------------
def print_summary():
    print("\n--- Emergent Gravity Framework ---")
    print(f"Charge:           C = {C}")
    print(f"Force (tension):  F = {F_from_tension}")
    print(f"Emergent G:       G = {G_emergent}")
    print(f"Force (Newton):   F = {F_newtonian}")
    print(f"Difference:       Δ = {difference} (should be 0)")
    print("\nConclusion: Newtonian gravity is recovered as a special case.\n")

# Call to display the summary if this file is executed directly
if __name__ == "__main__":
    print_summary()

OUTPUT:

--- Emergent Gravity Framework ---
Charge:           C = k*M
Force (tension):  F = Omega*k**2*M**2/(r*s)
Emergent G:       G = Omega*k**2*r/s
Force (Newton):   F = Omega*k**2*M**2/(r*s)
Difference:       Δ = 0 (should be 0)

Conclusion: Newtonian gravity is recovered as a special case.


This demonstrates that gravity emerges from field tension (Ω) when charge is proportional to mass, and time and distance scales are respected.

This isn’t an end-all be all, rather, it is a departure from something which was thought to be foundational, being disproven as a universal constant. Kindly extrapolate.

bigG.zip (3.2 MB)

supernova9.py



supernovaphi3.py



supernovarecursive7.py



recursivelightspeed2.py




DATA SOURCES: Scolnic et al. Supernovae Table

https://archive.stsci.edu/hlsps/ps1cosmo/scolnic/hlsp_ps1cosmo_panstarrs_gpc1_all_model_v1_lcparam-full.txt

https://archive.stsci.edu/hlsps/ps1cosmo/scolnic/hlsp_ps1cosmo_panstarrs_gpc1_all_model_v1_sys-full.txt

.