The 1st plot is, itself, only a slice of the greater script.
1st Plot:
2nd Plot:
The following was the wrong thread, but it is the thread that was provided with the video, so here it is again: ChatGPT - Golden Field Summary
THE CORRECT THREAD TO DESCRIBE WHAT’S GOING ON “UNDER THE HOOD” IS LOCATED HERE.
# tooeasy10000-truncated.py
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify, conjugate, Rational
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
# Constants
phi = float(sp.GoldenRatio)
sqrt5 = sqrt(5)
Ω = sp.Symbol("Ω") # Field tension symbol
k = sp.Integer(-1) # Radial exponent
r = 1 # Radial unit
# Raw prime list (first 100 primes or more, truncated for brevity)
primes_raw = """
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
(TRUNCATED, BUT 10,000 PRIMES WERE INJECTED)
"""
primes = [int(p) for p in primes_raw.split()]
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def solve_n_beta_for_prime(p_target, prime_interp, bracket=(0.1, 20)):
def objective(n_beta): return P_nb(n_beta, prime_interp) - p_target
result = root_scalar(objective, bracket=bracket, method='brentq')
if result.converged:
return result.root
else:
raise ValueError(f"Could not solve for n_beta corresponding to prime {p_target}")
def F_bin(x_val):
return (phi**x_val - (-1/phi)**x_val) / sqrt5
def Pi_x(x_val, s):
s = sp.sympify(s)
return exp(I * pi * x_val) * zeta(s, Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = phi * F * 2**x_val * P * zeta_val * Ω
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
class GoldenClassField:
def __init__(self, s_list, x_list, prime_interp):
self.s_list = [sp.sympify(s) for s in s_list]
self.x_list = x_list
self.prime_interp = prime_interp
self.field_generators = []
self.field_names = []
self.construct_class_field()
def construct_class_field(self):
for s in self.s_list:
for x in self.x_list:
f = F_x(x, s, self.prime_interp)
self.field_generators.append(simplify(f))
self.field_names.append(f"F_{x:.4f}_s_{s}")
def as_dict(self):
return dict(zip(self.field_names, self.field_generators))
def display(self):
for name, val in self.as_dict().items():
print(f"{name} = {val}")
def reciprocity_check(self):
print("\nReciprocity Tests: F_x(s) * F_x(1-s)")
for s in self.s_list:
for x in self.x_list:
try:
s_conj = 1 - s
prod = simplify(F_x(x, s, self.prime_interp) * F_x(x, s_conj, self.prime_interp))
print(f"x={x:.4f}, s={s}, F_x(s)·F_x(1-s) = {prod}")
except Exception as e:
print(f"Failed for x={x}, s={s}: {e}")
def field_automorphisms(F_val, x_val, s, prime_interp):
s = sp.sympify(s)
return {
"F_x(s)": simplify(F_x(x_val, s, prime_interp)),
"F_x(1-s)": simplify(F_x(x_val, 1 - s, prime_interp)),
"F_-x(s)": simplify(F_x(-x_val, s, prime_interp)),
"conjugate(F)": simplify(conjugate(F_x(x_val, s, prime_interp))),
}
def field_tension(F_val, C_val, m_val, s_val):
# Example symbolic tension extraction formula
return simplify((F_val * m_val * s_val) / (C_val**2))
if __name__ == "__main__":
print("Preparing prime interpolation...")
prime_interp = prepare_prime_interpolation()
# Example Riemann zeta zeros (first two nontrivial zeros on critical line)
zeros = [sp.sympify("0.5 + 14.134725*I"), sp.sympify("0.5 + 21.022040*I")]
# Solve n_beta for a prime near 541 (to demonstrate root solving)
try:
x_541 = solve_n_beta_for_prime(541, prime_interp)
print(f"Solved n+β for prime 541: {x_541:.6f}")
except Exception as e:
print(str(e))
x_541 = None
x_vals = [5, 10]
if x_541:
x_vals.append(x_541)
# Construct Golden Class Field
GCF = GoldenClassField(zeros, x_vals, prime_interp)
GCF.display()
# Reciprocity tests
GCF.reciprocity_check()
# Automorphisms on one example
test_s = zeros[0]
test_x = x_vals[1]
auto = field_automorphisms(F_x(test_x, test_s, prime_interp), test_x, test_s, prime_interp)
print("\nSymbolic Automorphisms:")
for key, val in auto.items():
print(f"{key}: {val}")
# Example field tension calculation (symbolic)
print("\nField Tension (Ω):")
C = sp.Symbol('C')
m = sp.Symbol('m')
s_ = sp.Symbol('s')
F_val = sp.Abs(F_x(test_x, test_s, prime_interp))
tension = field_tension(F_val, C, m, s_)
print(tension)
YIELDS:
py tooeasy10000full.py
Preparing prime interpolation...
Solved n+β for prime 541: 9.590622
F_5.0000_s_0.5 + 14.134725*I = 1.0*sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I))*(-0.217537177381404 + 6.14965635912474*I)*zeta(0.5 + 14.134725*I, 1/2)
F_10.0000_s_0.5 + 14.134725*I = 39.1462815355537*sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I))*(0.5 - 14.134725*I)*zeta(0.5 + 14.134725*I, 1/2)
F_9.5906_s_0.5 + 14.134725*I = 1.0*sqrt(Ω*(1.78610995454154e-6 - 1.12125725404408e-5*I))*(1.37320228847257 - 38.819673433861*I)*exp(9.5906215859709*I*pi)*zeta(0.5 + 14.134725*I, 1/2)
F_5.0000_s_0.5 + 21.02204*I = 1.0*sqrt(Ω*(8.98483605435458e-8 + 4.00709084764903e-7*I))*(-0.0984137961388264 + 4.13771751796451*I)*zeta(0.5 + 21.02204*I, 1/2)
F_10.0000_s_0.5 + 21.02204*I = 17.7097736442471*sqrt(Ω*(8.98483605435458e-8 + 4.00709084764903e-7*I))*(0.5 - 21.02204*I)*zeta(0.5 + 21.02204*I, 1/2)
F_9.5906_s_0.5 + 21.02204*I = 1.0*sqrt(Ω*(9.07062684366856e-6 + 4.04713570287637e-5*I))*(0.621236570695075 - 26.1193200772294*I)*exp(9.5906215859709*I*pi)*zeta(0.5 + 21.02204*I, 1/2)
Reciprocity Tests: F_x(s) * F_x(1-s)
x=5.0000, s=0.5 + 14.134725*I, F_x(s)·F_x(1-s) = 37.8655957588664*sqrt(Ω*(1.7674298413849e-8 + 1.11020289309231e-7*I))*sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I))*zeta(0.5 - 14.134725*I, 1/2)*zeta(0.5 + 14.134725*I, 1/2)
x=10.0000, s=0.5 + 14.134725*I, F_x(s)·F_x(1-s) = 306548.259725814*sqrt(Ω*(1.7674298413849e-8 + 1.11020289309231e-7*I))*sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I))*zeta(0.5 - 14.134725*I, 1/2)*zeta(0.5 + 14.134725*I, 1/2)
x=9.5906, s=0.5 + 14.134725*I, F_x(s)·F_x(1-s) = 1508.85273003668*sqrt(Ω*(1.78400002592542e-6 + 1.12129084385746e-5*I))*sqrt(Ω*(1.78610995454154e-6 - 1.12125725404408e-5*I))*exp(19.1812431719418*I*pi)*zeta(0.5 - 14.134725*I, 1/2)*zeta(0.5 + 14.134725*I, 1/2)
x=5.0000, s=0.5 + 21.02204*I, F_x(s)·F_x(1-s) = 17.1303915337408*sqrt(Ω*(8.98483605435458e-8 - 4.00709084764903e-7*I))*sqrt(Ω*(8.98483605435458e-8 + 4.00709084764903e-7*I))*zeta(0.5 - 21.02204*I, 1/2)*zeta(0.5 + 21.02204*I, 1/2)
x=10.0000, s=0.5 + 21.02204*I, F_x(s)·F_x(1-s) = 138682.400417811*sqrt(Ω*(8.98483605435458e-8 - 4.00709084764903e-7*I))*sqrt(Ω*(8.98483605435458e-8 + 4.00709084764903e-7*I))*zeta(0.5 - 21.02204*I, 1/2)*zeta(0.5 + 21.02204*I, 1/2)
x=9.5906, s=0.5 + 21.02204*I, F_x(s)·F_x(1-s) = 682.604816173527*sqrt(Ω*(9.07062684366856e-6 + 4.04713570287637e-5*I))*sqrt(Ω*(9.07824227657678e-6 - 4.04696494703687e-5*I))*exp(19.1812431719418*I*pi)*zeta(0.5 - 21.02204*I, 1/2)*zeta(0.5 + 21.02204*I, 1/2)
Symbolic Automorphisms:
F_x(s): 39.1462815355537*sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I))*(0.5 - 14.134725*I)*zeta(0.5 + 14.134725*I, 1/2)
F_x(1-s): 39.1462815355537*sqrt(Ω*(1.7674298413849e-8 + 1.11020289309231e-7*I))*(0.5 + 14.134725*I)*zeta(0.5 - 14.134725*I, 1/2)
F_-x(s): 1.0*sqrt(Ω*(-1.7674298413849e-8 + 1.11020289309231e-7*I))*(0.045424303171084 - 1.2841200672798*I)*zeta(0.5 + 14.134725*I, 1/2)
conjugate(F): 39.1462815355537*(0.5 + 14.134725*I)*conjugate(sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I)))*conjugate(zeta(0.5 + 14.134725*I, 1/2))
Field Tension (Ω):
553.668004968514*m*s*Abs(sqrt(Ω*(1.7674298413849e-8 - 1.11020289309231e-7*I))*zeta(0.5 + 14.134725*I, 1/2))/C**2
From this, we created these:
demo7.py
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from sympy import sqrt, zeta, exp, I, Rational
from scipy.interpolate import interp1d
# Constants
phi = float(sp.GoldenRatio)
sqrt5 = np.sqrt(5)
k = -1
def prepare_prime_interpolation(res=10000):
indices = np.arange(1, res + 1)
primes = [sp.prime(i) for i in indices]
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def F_bin(x_val):
try:
return (phi**x_val - (-1/phi)**x_val) / sqrt5
except:
return np.nan
def Pi_x(x_val, s):
return sp.exp(sp.I * sp.pi * x_val) * zeta(s, Rational(1, 2))
def D_x(x_val, s, prime_interp, Ω=1):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
z_val = zeta(s)
s_k = s**k
product = phi * F * 2**x_val * P * z_val * Ω
return sqrt(product) * s_k
def F_x(x_val, s, prime_interp, Ω=1):
return D_x(x_val, s, prime_interp, Ω) * Pi_x(x_val, s)
# Parameters for grid
x_min, x_max = 1.0, 20.0
t_min, t_max = 0.1, 40.0
x_steps = 60
t_steps = 200
# Generate coordinate grids
x_vals = np.linspace(x_min, x_max, x_steps)
t_vals = np.linspace(t_min, t_max, t_steps)
X, T = np.meshgrid(x_vals, t_vals)
# Prepare prime interpolation
prime_interp = prepare_prime_interpolation(10000)
# Evaluate |F_x(0.5 + i t)| on the grid (numeric only for speed)
abs_F = np.zeros_like(X)
for i in range(t_steps):
for j in range(x_steps):
x = X[i, j]
t = T[i, j]
s = 0.5 + t * 1j
try:
val = F_x(x, s, prime_interp)
mag = abs(complex(val.evalf()))
abs_F[i, j] = mag if not np.isnan(mag) else 0
except Exception:
abs_F[i, j] = 0
# Transform x-axis to golden-logarithmic scale:
# safe +1 to avoid log(0)
X_phi_log = np.log(x_vals + 1) / np.log(phi)
# Plot 3D surface
fig = plt.figure(figsize=(12, 7))
ax = fig.add_subplot(projection='3d')
T_plot, X_phi_plot = np.meshgrid(t_vals, X_phi_log)
# Because X and T mesh are transposed, transpose abs_F to align:
abs_F_T = abs_F.T
surf = ax.plot_surface(X_phi_plot, T_plot, abs_F_T, cmap=cm.viridis, linewidth=0, antialiased=True)
ax.set_xlabel(r"Recursive coordinate $\log_{\phi}(x + 1)$")
ax.set_ylabel(r"Imaginary part of $s = 0.5 + it$")
ax.set_zlabel(r"$|F_x(s)|$ magnitude")
ax.set_title("Golden Recursive Algebra Field Magnitude Surface")
fig.colorbar(surf, shrink=0.5, aspect=10, label=r"$|F_x(s)|$")
plt.show()
WHICH YIELDS:
AND
animate4.py
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from sympy import sqrt, zeta, exp, I, Rational
from scipy.interpolate import interp1d
import matplotlib.animation as animation
# Constants
phi = float(sp.GoldenRatio)
k = -1
def prepare_prime_interpolation(res=10000):
indices = np.arange(1, res + 1)
primes = [sp.prime(i) for i in indices]
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def F_bin(x_val):
try:
return (phi**x_val - (-1/phi)**x_val) / np.sqrt(5)
except:
return np.nan
def Pi_x(x_val, s):
return sp.exp(sp.I * sp.pi * x_val) * zeta(s, Rational(1, 2))
def D_x(x_val, s, prime_interp, Ω=1):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
z_val = zeta(s)
s_k = s**k
product = phi * F * 2**x_val * P * z_val * Ω
return sqrt(product) * s_k
def F_x(x_val, s, prime_interp, Ω=1):
return D_x(x_val, s, prime_interp, Ω) * Pi_x(x_val, s)
# Parameters
x_min, x_max = 1.0, 20.0
t_min, t_max = 0.1, 40.0
t_steps = 300
x_frames = 60 # animation frames
# Prepare data
t_vals = np.linspace(t_min, t_max, t_steps)
prime_interp = prepare_prime_interpolation(10000)
# Precompute golden-log x for display axis
def golden_log(x):
return np.log(x + 1) / np.log(phi)
# Setup plot
fig, ax = plt.subplots(figsize=(10,5))
line, = ax.plot([], [], lw=2)
ax.set_xlim(t_min, t_max)
ax.set_ylim(0, 1)
ax.set_xlabel("Imaginary part of s (t)")
ax.set_ylabel(r"$|F_x(0.5 + it)|$")
title = ax.set_title("")
# Initialization
def init():
line.set_data([], [])
return line,
# Animation update function
def animate(i):
x = x_min + (x_max - x_min) * (i / (x_frames - 1))
magnitudes = []
for t in t_vals:
s = 0.5 + t * I
try:
val = F_x(x, s, prime_interp)
mag = abs(complex(val.evalf()))
if np.isnan(mag) or np.isinf(mag):
mag = 0
magnitudes.append(mag)
except Exception:
magnitudes.append(0)
magnitudes = np.array(magnitudes)
line.set_data(t_vals, magnitudes)
ymax = np.max(magnitudes)
ax.set_ylim(0, ymax*1.1 if ymax > 0 else 1)
ax.set_title(f"Golden Coord $\\log_{{\\phi}}(x+1)$ = {golden_log(x):.4f} — x = {x:.4f}")
return line,
ani = animation.FuncAnimation(fig, animate, frames=x_frames, init_func=init,
blit=True, interval=100, repeat=True)
plt.tight_layout()
plt.show()
WHICH YIELDS:
AND
grok5.py
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import shutil
# Constants
phi = sp.GoldenRatio
sqrt5 = sp.sqrt(5)
Ω = 1.0 # Set Ω to a constant for numerical evaluation
k = -1 # Radial exponent
r = 1 # Radial unit
# Truncated prime list (using the provided primes)
primes_raw = """ 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
"""
primes = [int(p) for p in primes_raw.split()]
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(float(phi))
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def F_bin(x_val):
# Use sympy for numerical stability, return complex result
phi_x = phi**x_val
neg_phi_inv_x = (-1/phi)**x_val
result = (phi_x - neg_phi_inv_x) / sqrt5
return complex(result.evalf()) # Convert to complex number
def Pi_x(x_val, s):
s = sp.sympify(s)
return exp(I * pi * x_val) * zeta(s, sp.Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = float(phi) * F * 2**x_val * P * zeta_val * Ω
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
# Prepare interpolation
prime_interp = prepare_prime_interpolation()
# Parameters for the plot
s_val = sp.sympify("0.5 + 14.134725*I") # First nontrivial zeta zero
x_vals = np.linspace(2, 5, 50) # Reduced range to avoid numerical issues
t_vals = np.linspace(0, 2*np.pi, 20) # Reduced frames for clarity
# Compute field values
def compute_field_values(x_vals, s_val, t):
real_vals = []
imag_vals = []
for x in x_vals:
try:
f_val = F_x(x, s_val, prime_interp) * np.exp(1j * t) # Add phase shift
f_val = complex(f_val.evalf()) # Numerical evaluation
real_vals.append(f_val.real)
imag_vals.append(f_val.imag)
except (ValueError, OverflowError, TypeError):
real_vals.append(np.nan) # Handle numerical errors gracefully
imag_vals.append(np.nan)
return np.array(real_vals), np.array(imag_vals)
# Store all spirals
spiral_data = []
for t in t_vals:
real_vals, imag_vals = compute_field_values(x_vals, s_val, t)
spiral_data.append((real_vals, imag_vals, x_vals))
# Set up the 3D plot
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Set labels and limits
ax.set_xlabel('Real(F_x)')
ax.set_ylabel('Imag(F_x)')
ax.set_zlabel('x')
ax.set_title(f'3D Animation of Golden Class Field (s = {s_val}) with Retained Spirals')
# Determine axis limits based on all spirals
all_real = np.concatenate([data[0] for data in spiral_data])
all_imag = np.concatenate([data[1] for data in spiral_data])
all_real = all_real[~np.isnan(all_real)]
all_imag = all_imag[~np.isnan(all_imag)]
if len(all_real) > 0 and len(all_imag) > 0:
ax.set_xlim(min(all_real) * 1.1, max(all_real) * 1.1)
ax.set_ylim(min(all_imag) * 1.1, max(all_imag) * 1.1)
else:
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(min(x_vals), max(x_vals))
# Animation functions
def init():
ax.clear()
ax.set_xlabel('Real(F_x)')
ax.set_ylabel('Imag(F_x)')
ax.set_zlabel('x')
ax.set_title(f'3D Animation of Golden Class Field (s = {s_val}) with Retained Spirals')
ax.set_xlim(min(all_real) * 1.1, max(all_real) * 1.1)
ax.set_ylim(min(all_imag) * 1.1, max(all_imag) * 1.1)
ax.set_zlim(min(x_vals), max(x_vals))
return []
def update(frame, x_vals, spiral_data):
ax.clear()
ax.set_xlabel('Real(F_x)')
ax.set_ylabel('Imag(F_x)')
ax.set_zlabel('x')
ax.set_title(f'3D Animation of Golden Class Field (s = {s_val}) with Retained Spirals')
ax.set_xlim(min(all_real) * 1.1, max(all_real) * 1.1)
ax.set_ylim(min(all_imag) * 1.1, max(all_imag) * 1.1)
ax.set_zlim(min(x_vals), max(x_vals))
# Plot all spirals up to the current frame
for i, (real_vals, imag_vals, x_vals) in enumerate(spiral_data[:frame + 1]):
alpha = 0.2 + 0.8 * (i + 1) / len(t_vals) # Increase opacity for newer spirals
ax.plot(real_vals, imag_vals, x_vals, 'b-', lw=1, alpha=alpha)
return []
# Create animation
ani = FuncAnimation(fig, update, frames=len(t_vals), init_func=init, fargs=(x_vals, spiral_data), blit=False, interval=300)
# Check for ffmpeg and save animation if available
if shutil.which('ffmpeg'):
ani.save('gcf_animation_retained.mp4', writer='ffmpeg', dpi=100)
print("Animation saved as 'gcf_animation_retained.mp4'")
else:
print("ffmpeg not found. Saving static plot with all spirals instead.")
for real_vals, imag_vals, x_vals in spiral_data:
ax.plot(real_vals, imag_vals, x_vals, 'b-', lw=1, alpha=0.5)
plt.savefig('gcf_static_plot_retained.png', dpi=100)
print("Static plot saved as 'gcf_static_plot_retained.png'")
plt.show()
WHICH YIELDS:
For fun, I set OHM = -1 and radius = -1, I then added more steps (42 in place of 20):
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import shutil
# Constants
phi = sp.GoldenRatio
sqrt5 = sp.sqrt(5)
Ω = -1.0 # Set Ω to a constant for numerical evaluation
k = -1 # Radial exponent
r = phi # Radial unit
# Truncated prime list (using the provided primes)
primes_raw = """ 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
"""
primes = [int(p) for p in primes_raw.split()]
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(float(phi))
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def F_bin(x_val):
# Use sympy for numerical stability, return complex result
phi_x = phi**x_val
neg_phi_inv_x = (-1/phi)**x_val
result = (phi_x - neg_phi_inv_x) / sqrt5
return complex(result.evalf()) # Convert to complex number
def Pi_x(x_val, s):
s = sp.sympify(s)
return exp(I * pi * x_val) * zeta(s, sp.Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = float(phi) * F * 2**x_val * P * zeta_val * Ω
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
# Prepare interpolation
prime_interp = prepare_prime_interpolation()
# Parameters for the plot
s_val = sp.sympify("0.5 + 14.134725*I") # First nontrivial zeta zero
x_vals = np.linspace(2, 5, 50) # Reduced range to avoid numerical issues
t_vals = np.linspace(0, 2*np.pi, 42) # Reduced frames for clarity
# Compute field values
def compute_field_values(x_vals, s_val, t):
real_vals = []
imag_vals = []
for x in x_vals:
try:
f_val = F_x(x, s_val, prime_interp) * np.exp(1j * t) # Add phase shift
f_val = complex(f_val.evalf()) # Numerical evaluation
real_vals.append(f_val.real)
imag_vals.append(f_val.imag)
except (ValueError, OverflowError, TypeError):
real_vals.append(np.nan) # Handle numerical errors gracefully
imag_vals.append(np.nan)
return np.array(real_vals), np.array(imag_vals)
# Store all spirals
spiral_data = []
for t in t_vals:
real_vals, imag_vals = compute_field_values(x_vals, s_val, t)
spiral_data.append((real_vals, imag_vals, x_vals))
# Set up the 3D plot
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Set labels and limits
ax.set_xlabel('Real(F_x)')
ax.set_ylabel('Imag(F_x)')
ax.set_zlabel('x')
ax.set_title(f'3D Animation of Golden Class Field (s = {s_val}) with Retained Spirals')
# Determine axis limits based on all spirals
all_real = np.concatenate([data[0] for data in spiral_data])
all_imag = np.concatenate([data[1] for data in spiral_data])
all_real = all_real[~np.isnan(all_real)]
all_imag = all_imag[~np.isnan(all_imag)]
if len(all_real) > 0 and len(all_imag) > 0:
ax.set_xlim(min(all_real) * 1.1, max(all_real) * 1.1)
ax.set_ylim(min(all_imag) * 1.1, max(all_imag) * 1.1)
else:
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(min(x_vals), max(x_vals))
# Animation functions
def init():
ax.clear()
ax.set_xlabel('Real(F_x)')
ax.set_ylabel('Imag(F_x)')
ax.set_zlabel('x')
ax.set_title(f'3D Animation of Golden Class Field (s = {s_val}) with Retained Spirals')
ax.set_xlim(min(all_real) * 1.1, max(all_real) * 1.1)
ax.set_ylim(min(all_imag) * 1.1, max(all_imag) * 1.1)
ax.set_zlim(min(x_vals), max(x_vals))
return []
def update(frame, x_vals, spiral_data):
ax.clear()
ax.set_xlabel('Real(F_x)')
ax.set_ylabel('Imag(F_x)')
ax.set_zlabel('x')
ax.set_title(f'3D Animation of Golden Class Field (s = {s_val}) with Retained Spirals')
ax.set_xlim(min(all_real) * 1.1, max(all_real) * 1.1)
ax.set_ylim(min(all_imag) * 1.1, max(all_imag) * 1.1)
ax.set_zlim(min(x_vals), max(x_vals))
# Plot all spirals up to the current frame
for i, (real_vals, imag_vals, x_vals) in enumerate(spiral_data[:frame + 1]):
alpha = 0.2 + 0.8 * (i + 1) / len(t_vals) # Increase opacity for newer spirals
ax.plot(real_vals, imag_vals, x_vals, 'b-', lw=1, alpha=alpha)
return []
# Create animation
ani = FuncAnimation(fig, update, frames=len(t_vals), init_func=init, fargs=(x_vals, spiral_data), blit=False, interval=300)
# Check for ffmpeg and save animation if available
if shutil.which('ffmpeg'):
ani.save('gcf_animation_retained.mp4', writer='ffmpeg', dpi=100)
print("Animation saved as 'gcf_animation_retained.mp4'")
else:
print("ffmpeg not found. Saving static plot with all spirals instead.")
for real_vals, imag_vals, x_vals in spiral_data:
ax.plot(real_vals, imag_vals, x_vals, 'b-', lw=1, alpha=0.5)
plt.savefig('gcf_static_plot_retained.png', dpi=100)
print("Static plot saved as 'gcf_static_plot_retained.png'")
plt.show()
WHICH YIELDS:
And finally, when attempting to demonstrate our changing axes, we produce a crude version of the desired result:
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
from scipy.interpolate import interp1d
import shutil
# Constants
phi = float(sp.GoldenRatio)
sqrt5 = np.sqrt(5)
k = -1
Ω = -1.0
# Prime interpolation
def prepare_prime_interpolation(res=10000):
indices = np.arange(1, res + 1)
primes = [sp.prime(i) for i in indices]
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def F_bin(x_val):
try:
phi_x = sp.N(phi**x_val) # SymPy numerical evaluation for stability
neg_phi_inv_x = sp.N((-1/phi)**x_val)
result = (phi_x - neg_phi_inv_x) / sqrt5
return complex(result)
except (ValueError, OverflowError, TypeError):
return np.nan
def Pi_x(x_val, s):
s = sp.sympify(s)
return sp.exp(sp.I * sp.pi * x_val) * sp.zeta(s, sp.Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
z_val = sp.zeta(s)
s_k = s**k
product = phi * F * 2**x_val * P * z_val * Ω
return sp.sqrt(product) * s_k
def F_x(x_val, s, prime_interp):
return D_x(x_val, s, prime_interp) * Pi_x(x_val, s)
# Prepare interpolation
prime_interp = prepare_prime_interpolation(10000)
# Parameters
s_val = sp.sympify("0.5 + 14.134725*I") # First nontrivial zeta zero
x_vals = np.linspace(2, 5, 50) # Reduced range for stability
t_vals = np.linspace(0.1, 40, 100) # Reduced t-range for surface
morph_steps = 100 # Frames for morphing
morph_vals = np.sin(np.linspace(0, np.pi, morph_steps))**2 # Smooth oscillation
# Compute surface data (first script: |F_x(s)| at fixed s, varying t)
X_phi_log = np.log(x_vals + 1) / np.log(phi) # Golden-logarithmic x
abs_F_surface = np.zeros((len(t_vals), len(x_vals)))
for i, t in enumerate(t_vals):
for j, x in enumerate(x_vals):
s = 0.5 + t * 1j
try:
val = F_x(x, s, prime_interp)
mag = abs(complex(val.evalf()))
abs_F_surface[i, j] = mag if not np.isnan(mag) else 0
except Exception:
abs_F_surface[i, j] = 0
# Compute spiral data (second script: Real(F_x), Imag(F_x) at fixed s, t=0)
real_F_spiral, imag_F_spiral = [], []
t_fixed = 0 # Fix t for spiral reference
for x in x_vals:
try:
f_val = F_x(x, s_val, prime_interp) * np.exp(1j * t_fixed)
f_val = complex(f_val.evalf())
real_F_spiral.append(f_val.real if not np.isnan(f_val.real) else 0)
imag_F_spiral.append(f_val.imag if not np.isnan(f_val.imag) else 0)
except Exception:
real_F_spiral.append(0)
imag_F_spiral.append(0)
real_F_spiral, imag_F_spiral = np.array(real_F_spiral), np.array(imag_F_spiral)
# Set up plot
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
# Determine axis limits
x1_min, x1_max = min(X_phi_log), max(X_phi_log)
x2_min, x2_max = min(real_F_spiral) * 1.1, max(real_F_spiral) * 1.1
y1_min, y1_max = min(t_vals), max(t_vals)
y2_min, y2_max = min(imag_F_spiral) * 1.1, max(imag_F_spiral) * 1.1
z1_min, z1_max = min(abs_F_surface.flatten()) * 1.1, max(abs_F_surface.flatten()) * 1.1
z2_min, z2_max = min(x_vals), max(x_vals)
# Animation function
def update(frame):
ax.clear()
alpha = morph_vals[frame]
# Select a single t-slice from surface data for morphing
t_idx = frame % len(t_vals) # Cycle through t for dynamic effect
abs_F_slice = abs_F_surface[t_idx, :]
# Interpolate axes
x_coords = (1 - alpha) * X_phi_log + alpha * real_F_spiral
y_coords = (1 - alpha) * np.full_like(x_vals, t_vals[t_idx]) + alpha * imag_F_spiral
z_coords = (1 - alpha) * abs_F_slice + alpha * x_vals
# Plot curve
ax.plot(x_coords, y_coords, z_coords, 'b-', lw=2)
# Update axis labels
ax.set_xlabel(f'Morph: {"Log_φ(x+1)" if alpha < 0.5 else "Real(F_x)"}')
ax.set_ylabel(f'Morph: {"t (Im(s))" if alpha < 0.5 else "Imag(F_x)"}')
ax.set_zlabel(f'Morph: {"|F_x(s)|" if alpha < 0.5 else "x"}')
# Update axis limits
ax.set_xlim((1 - alpha) * x1_min + alpha * x2_min, (1 - alpha) * x1_max + alpha * x2_max)
ax.set_ylim((1 - alpha) * y1_min + alpha * y2_min, (1 - alpha) * y1_max + alpha * y2_max)
ax.set_zlim((1 - alpha) * z1_min + alpha * z2_min, (1 - alpha) * z1_max + alpha * z2_max)
ax.set_title(f'Morphing Golden Class Field (α = {alpha:.2f}, t = {t_vals[t_idx]:.2f})')
return []
# Create animation
ani = FuncAnimation(fig, update, frames=morph_steps, interval=50, blit=False)
# Save or display
if shutil.which('ffmpeg'):
ani.save('morphing_waveforms.mp4', writer='ffmpeg', dpi=100)
print("Animation saved as 'morphing_waveforms.mp4'")
else:
print("ffmpeg not found. Displaying interactively.")
plt.show()
WHICH YIELDS:
2025-07-04 17-16-37.mkv (7.3 MB)